1
# Copyright (C) 2008 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17
"""Persistent maps from tuple_of_strings->string using CHK stores.
19
Overview and current status:
21
The CHKMap class implements a dict from tuple_of_strings->string by using a trie
22
with internal nodes of 8-bit fan out; The key tuples are mapped to strings by
23
joining them by \x00, and \x00 padding shorter keys out to the length of the
24
longest key. Leaf nodes are packed as densely as possible, and internal nodes
25
are all an additional 8-bits wide leading to a sparse upper tree.
27
Updates to a CHKMap are done preferentially via the apply_delta method, to
28
allow optimisation of the update operation; but individual map/unmap calls are
29
possible and supported. All changes via map/unmap are buffered in memory until
30
the _save method is called to force serialisation of the tree. apply_delta
31
performs a _save implicitly.
36
Densely packed upper nodes.
43
from bzrlib import lazy_import
44
lazy_import.lazy_import(globals(), """
45
from bzrlib import versionedfile
56
# If each line is 50 bytes, and you have 255 internal pages, with 255-way fan
57
# out, it takes 3.1MB to cache the layer.
58
_PAGE_CACHE_SIZE = 4*1024*1024
59
# We are caching bytes so len(value) is perfectly accurate
60
_page_cache = lru_cache.LRUSizeCache(_PAGE_CACHE_SIZE)
62
# If a ChildNode falls below this many bytes, we check for a remap
63
_INTERESTING_NEW_SIZE = 50
64
# If a ChildNode shrinks by more than this amount, we check for a remap
65
_INTERESTING_SHRINKAGE_LIMIT = 20
66
# If we delete more than this many nodes applying a delta, we check for a remap
67
_INTERESTING_DELETES_LIMIT = 5
70
def _search_key_plain(key):
71
"""Map the key tuple into a search string that just uses the key bytes."""
72
return '\x00'.join(key)
75
search_key_registry = registry.Registry()
76
search_key_registry.register('plain', _search_key_plain)
80
"""A persistent map from string to string backed by a CHK store."""
82
def __init__(self, store, root_key, search_key_func=None):
83
"""Create a CHKMap object.
85
:param store: The store the CHKMap is stored in.
86
:param root_key: The root key of the map. None to create an empty
88
:param search_key_func: A function mapping a key => bytes. These bytes
89
are then used by the internal nodes to split up leaf nodes into
93
if search_key_func is None:
94
search_key_func = _search_key_plain
95
self._search_key_func = search_key_func
97
self._root_node = LeafNode(search_key_func=search_key_func)
99
self._root_node = self._node_key(root_key)
101
def apply_delta(self, delta):
102
"""Apply a delta to the map.
104
:param delta: An iterable of old_key, new_key, new_value tuples.
105
If new_key is not None, then new_key->new_value is inserted
106
into the map; if old_key is not None, then the old mapping
107
of old_key is removed.
110
for old, new, value in delta:
111
if old is not None and old != new:
112
self.unmap(old, check_remap=False)
114
for old, new, value in delta:
117
if delete_count > _INTERESTING_DELETES_LIMIT:
118
trace.mutter("checking remap as %d deletions", delete_count)
122
def _ensure_root(self):
123
"""Ensure that the root node is an object not a key."""
124
if type(self._root_node) == tuple:
125
# Demand-load the root
126
self._root_node = self._get_node(self._root_node)
128
def _get_node(self, node):
131
Note that this does not update the _items dict in objects containing a
132
reference to this node. As such it does not prevent subsequent IO being
135
:param node: A tuple key or node object.
136
:return: A node object.
138
if type(node) == tuple:
139
bytes = self._read_bytes(node)
140
return _deserialise(bytes, node,
141
search_key_func=self._search_key_func)
145
def _read_bytes(self, key):
147
return _page_cache[key]
149
stream = self._store.get_record_stream([key], 'unordered', True)
150
bytes = stream.next().get_bytes_as('fulltext')
151
_page_cache[key] = bytes
154
def _dump_tree(self, include_keys=False):
155
"""Return the tree in a string representation."""
157
res = self._dump_tree_node(self._root_node, prefix='', indent='',
158
include_keys=include_keys)
159
res.append('') # Give a trailing '\n'
160
return '\n'.join(res)
162
def _dump_tree_node(self, node, prefix, indent, include_keys=True):
163
"""For this node and all children, generate a string representation."""
168
node_key = node.key()
169
if node_key is not None:
170
key_str = ' %s' % (node_key[0],)
173
result.append('%s%r %s%s' % (indent, prefix, node.__class__.__name__,
175
if type(node) is InternalNode:
176
# Trigger all child nodes to get loaded
177
list(node._iter_nodes(self._store))
178
for prefix, sub in sorted(node._items.iteritems()):
179
result.extend(self._dump_tree_node(sub, prefix, indent + ' ',
180
include_keys=include_keys))
182
for key, value in sorted(node._items.iteritems()):
183
# Don't use prefix nor indent here to line up when used in
184
# tests in conjunction with assertEqualDiff
185
result.append(' %r %r' % (key, value))
189
def from_dict(klass, store, initial_value, maximum_size=0, key_width=1,
190
search_key_func=None):
191
"""Create a CHKMap in store with initial_value as the content.
193
:param store: The store to record initial_value in, a VersionedFiles
194
object with 1-tuple keys supporting CHK key generation.
195
:param initial_value: A dict to store in store. Its keys and values
197
:param maximum_size: The maximum_size rule to apply to nodes. This
198
determines the size at which no new data is added to a single node.
199
:param key_width: The number of elements in each key_tuple being stored
201
:param search_key_func: A function mapping a key => bytes. These bytes
202
are then used by the internal nodes to split up leaf nodes into
204
:return: The root chk of the resulting CHKMap.
206
result = CHKMap(store, None, search_key_func=search_key_func)
207
result._root_node.set_maximum_size(maximum_size)
208
result._root_node._key_width = key_width
210
for key, value in initial_value.items():
211
delta.append((None, key, value))
212
return result.apply_delta(delta)
214
def iter_changes(self, basis):
215
"""Iterate over the changes between basis and self.
217
:return: An iterator of tuples: (key, old_value, new_value). Old_value
218
is None for keys only in self; new_value is None for keys only in
222
# Read both trees in lexographic, highest-first order.
223
# Any identical nodes we skip
224
# Any unique prefixes we output immediately.
225
# values in a leaf node are treated as single-value nodes in the tree
226
# which allows them to be not-special-cased. We know to output them
227
# because their value is a string, not a key(tuple) or node.
229
# corner cases to beware of when considering this function:
230
# *) common references are at different heights.
231
# consider two trees:
232
# {'a': LeafNode={'aaa':'foo', 'aab':'bar'}, 'b': LeafNode={'b'}}
233
# {'a': InternalNode={'aa':LeafNode={'aaa':'foo', 'aab':'bar'},
234
# 'ab':LeafNode={'ab':'bar'}}
235
# 'b': LeafNode={'b'}}
236
# the node with aaa/aab will only be encountered in the second tree
237
# after reading the 'a' subtree, but it is encountered in the first
238
# tree immediately. Variations on this may have read internal nodes
239
# like this. we want to cut the entire pending subtree when we
240
# realise we have a common node. For this we use a list of keys -
241
# the path to a node - and check the entire path is clean as we
243
if self._node_key(self._root_node) == self._node_key(basis._root_node):
247
excluded_keys = set()
248
self_node = self._root_node
249
basis_node = basis._root_node
250
# A heap, each element is prefix, node(tuple/NodeObject/string),
251
# key_path (a list of tuples, tail-sharing down the tree.)
254
def process_node(node, path, a_map, pending):
255
# take a node and expand it
256
node = a_map._get_node(node)
257
if type(node) == LeafNode:
258
path = (node._key, path)
259
for key, value in node._items.items():
260
# For a LeafNode, the key is a serialized_key, rather than
261
# a search_key, but the heap is using search_keys
262
search_key = node._search_key_func(key)
263
heapq.heappush(pending, (search_key, key, value, path))
265
# type(node) == InternalNode
266
path = (node._key, path)
267
for prefix, child in node._items.items():
268
heapq.heappush(pending, (prefix, None, child, path))
269
def process_common_internal_nodes(self_node, basis_node):
270
self_items = set(self_node._items.items())
271
basis_items = set(basis_node._items.items())
272
path = (self_node._key, None)
273
for prefix, child in self_items - basis_items:
274
heapq.heappush(self_pending, (prefix, None, child, path))
275
path = (basis_node._key, None)
276
for prefix, child in basis_items - self_items:
277
heapq.heappush(basis_pending, (prefix, None, child, path))
278
def process_common_leaf_nodes(self_node, basis_node):
279
self_items = set(self_node._items.items())
280
basis_items = set(basis_node._items.items())
281
path = (self_node._key, None)
282
for key, value in self_items - basis_items:
283
prefix = self._search_key_func(key)
284
heapq.heappush(self_pending, (prefix, key, value, path))
285
path = (basis_node._key, None)
286
for key, value in basis_items - self_items:
287
prefix = basis._search_key_func(key)
288
heapq.heappush(basis_pending, (prefix, key, value, path))
289
def process_common_prefix_nodes(self_node, self_path,
290
basis_node, basis_path):
291
# Would it be more efficient if we could request both at the same
293
self_node = self._get_node(self_node)
294
basis_node = basis._get_node(basis_node)
295
if (type(self_node) == InternalNode
296
and type(basis_node) == InternalNode):
297
# Matching internal nodes
298
process_common_internal_nodes(self_node, basis_node)
299
elif (type(self_node) == LeafNode
300
and type(basis_node) == LeafNode):
301
process_common_leaf_nodes(self_node, basis_node)
303
process_node(self_node, self_path, self, self_pending)
304
process_node(basis_node, basis_path, basis, basis_pending)
305
process_common_prefix_nodes(self_node, None, basis_node, None)
308
excluded_keys = set()
309
def check_excluded(key_path):
310
# Note that this is N^2, it depends on us trimming trees
311
# aggressively to not become slow.
312
# A better implementation would probably have a reverse map
313
# back to the children of a node, and jump straight to it when
314
# a common node is detected, the proceed to remove the already
315
# pending children. bzrlib.graph has a searcher module with a
317
while key_path is not None:
318
key, key_path = key_path
319
if key in excluded_keys:
324
while self_pending or basis_pending:
327
# self is exhausted: output remainder of basis
328
for prefix, key, node, path in basis_pending:
329
if check_excluded(path):
331
node = basis._get_node(node)
334
yield (key, node, None)
336
# subtree - fastpath the entire thing.
337
for key, value in node.iteritems(basis._store):
338
yield (key, value, None)
340
elif not basis_pending:
341
# basis is exhausted: output remainder of self.
342
for prefix, key, node, path in self_pending:
343
if check_excluded(path):
345
node = self._get_node(node)
348
yield (key, None, node)
350
# subtree - fastpath the entire thing.
351
for key, value in node.iteritems(self._store):
352
yield (key, None, value)
355
# XXX: future optimisation - yield the smaller items
356
# immediately rather than pushing everything on/off the
357
# heaps. Applies to both internal nodes and leafnodes.
358
if self_pending[0][0] < basis_pending[0][0]:
360
prefix, key, node, path = heapq.heappop(self_pending)
361
if check_excluded(path):
365
yield (key, None, node)
367
process_node(node, path, self, self_pending)
369
elif self_pending[0][0] > basis_pending[0][0]:
371
prefix, key, node, path = heapq.heappop(basis_pending)
372
if check_excluded(path):
376
yield (key, node, None)
378
process_node(node, path, basis, basis_pending)
381
# common prefix: possibly expand both
382
if self_pending[0][1] is None:
387
if basis_pending[0][1] is None:
392
if not read_self and not read_basis:
393
# compare a common value
394
self_details = heapq.heappop(self_pending)
395
basis_details = heapq.heappop(basis_pending)
396
if self_details[2] != basis_details[2]:
397
yield (self_details[1],
398
basis_details[2], self_details[2])
400
# At least one side wasn't a simple value
401
if (self._node_key(self_pending[0][2]) ==
402
self._node_key(basis_pending[0][2])):
403
# Identical pointers, skip (and don't bother adding to
404
# excluded, it won't turn up again.
405
heapq.heappop(self_pending)
406
heapq.heappop(basis_pending)
408
# Now we need to expand this node before we can continue
409
if read_self and read_basis:
410
# Both sides start with the same prefix, so process
412
self_prefix, _, self_node, self_path = heapq.heappop(
414
basis_prefix, _, basis_node, basis_path = heapq.heappop(
416
assert self_prefix == basis_prefix
417
process_common_prefix_nodes(
418
self_node, self_path,
419
basis_node, basis_path)
422
prefix, key, node, path = heapq.heappop(self_pending)
423
if check_excluded(path):
425
process_node(node, path, self, self_pending)
427
prefix, key, node, path = heapq.heappop(basis_pending)
428
if check_excluded(path):
430
process_node(node, path, basis, basis_pending)
433
def iteritems(self, key_filter=None):
434
"""Iterate over the entire CHKMap's contents."""
436
return self._root_node.iteritems(self._store, key_filter=key_filter)
439
"""Return the key for this map."""
440
if type(self._root_node) is tuple:
441
return self._root_node
443
return self._root_node._key
447
return len(self._root_node)
449
def map(self, key, value):
450
"""Map a key tuple to value."""
451
# Need a root object.
453
prefix, node_details = self._root_node.map(self._store, key, value)
454
if len(node_details) == 1:
455
self._root_node = node_details[0][1]
457
self._root_node = InternalNode(prefix,
458
search_key_func=self._search_key_func)
459
self._root_node.set_maximum_size(node_details[0][1].maximum_size)
460
self._root_node._key_width = node_details[0][1]._key_width
461
for split, node in node_details:
462
self._root_node.add_node(split, node)
464
def _node_key(self, node):
465
"""Get the key for a node whether it's a tuple or node."""
466
if type(node) == tuple:
471
def unmap(self, key, check_remap=True):
472
"""remove key from the map."""
474
if type(self._root_node) is InternalNode:
475
unmapped = self._root_node.unmap(self._store, key,
476
check_remap=check_remap)
478
unmapped = self._root_node.unmap(self._store, key)
479
self._root_node = unmapped
481
def _check_remap(self):
482
"""Check if nodes can be collapsed."""
484
if type(self._root_node) is InternalNode:
485
self._root_node._check_remap(self._store)
488
"""Save the map completely.
490
:return: The key of the root node.
492
if type(self._root_node) == tuple:
494
return self._root_node
495
keys = list(self._root_node.serialise(self._store))
500
"""Base class defining the protocol for CHK Map nodes.
502
:ivar _raw_size: The total size of the serialized key:value data, before
503
adding the header bytes, and without prefix compression.
506
def __init__(self, key_width=1):
509
:param key_width: The width of keys for this node.
512
# Current number of elements
514
self._maximum_size = 0
515
self._key_width = key_width
516
# current size in bytes
518
# The pointers/values this node has - meaning defined by child classes.
520
# The common search prefix
521
self._search_prefix = None
524
items_str = str(sorted(self._items))
525
if len(items_str) > 20:
526
items_str = items_str[:16] + '...]'
527
return '%s(key:%s len:%s size:%s max:%s prefix:%s items:%s)' % (
528
self.__class__.__name__, self._key, self._len, self._raw_size,
529
self._maximum_size, self._search_prefix, items_str)
538
def maximum_size(self):
539
"""What is the upper limit for adding references to a node."""
540
return self._maximum_size
542
def set_maximum_size(self, new_size):
543
"""Set the size threshold for nodes.
545
:param new_size: The size at which no data is added to a node. 0 for
548
self._maximum_size = new_size
551
def common_prefix(cls, prefix, key):
552
"""Given 2 strings, return the longest prefix common to both.
554
:param prefix: This has been the common prefix for other keys, so it is
555
more likely to be the common prefix in this case as well.
556
:param key: Another string to compare to
558
if key.startswith(prefix):
560
# Is there a better way to do this?
561
for pos, (left, right) in enumerate(zip(prefix, key)):
565
common = prefix[:pos+1]
569
def common_prefix_for_keys(cls, keys):
570
"""Given a list of keys, find their common prefix.
572
:param keys: An iterable of strings.
573
:return: The longest common prefix of all keys.
577
if common_prefix is None:
580
common_prefix = cls.common_prefix(common_prefix, key)
581
if not common_prefix:
582
# if common_prefix is the empty string, then we know it won't
588
# Singleton indicating we have not computed _search_prefix yet
591
class LeafNode(Node):
592
"""A node containing actual key:value pairs.
594
:ivar _items: A dict of key->value items. The key is in tuple form.
595
:ivar _size: The number of bytes that would be used by serializing all of
599
def __init__(self, search_key_func=None):
601
# All of the keys in this leaf node share this common prefix
602
self._common_serialised_prefix = None
603
self._serialise_key = '\x00'.join
604
if search_key_func is None:
605
self._search_key_func = _search_key_plain
607
self._search_key_func = search_key_func
610
items_str = str(sorted(self._items))
611
if len(items_str) > 20:
612
items_str = items_str[:16] + '...]'
614
'%s(key:%s len:%s size:%s max:%s prefix:%s keywidth:%s items:%s)' \
615
% (self.__class__.__name__, self._key, self._len, self._raw_size,
616
self._maximum_size, self._search_prefix, self._key_width, items_str)
618
def _current_size(self):
619
"""Answer the current serialised size of this node.
621
This differs from self._raw_size in that it includes the bytes used for
624
if self._common_serialised_prefix is None:
628
# We will store a single string with the common prefix
629
# And then that common prefix will not be stored in any of the
631
prefix_len = len(self._common_serialised_prefix)
632
bytes_for_items = (self._raw_size - (prefix_len * self._len))
633
return (9 # 'chkleaf:\n'
634
+ len(str(self._maximum_size)) + 1
635
+ len(str(self._key_width)) + 1
636
+ len(str(self._len)) + 1
641
def deserialise(klass, bytes, key, search_key_func=None):
642
"""Deserialise bytes, with key key, into a LeafNode.
644
:param bytes: The bytes of the node.
645
:param key: The key that the serialised node has.
647
return _deserialise_leaf_node(bytes, key,
648
search_key_func=search_key_func)
650
def iteritems(self, store, key_filter=None):
651
"""Iterate over items in the node.
653
:param key_filter: A filter to apply to the node. It should be a
654
list/set/dict or similar repeatedly iterable container.
656
if key_filter is not None:
657
# Adjust the filter - short elements go to a prefix filter. All
658
# other items are looked up directly.
659
# XXX: perhaps defaultdict? Profiling<rinse and repeat>
661
for key in key_filter:
662
if len(key) == self._key_width:
663
# This filter is meant to match exactly one key, yield it
666
yield key, self._items[key]
668
# This key is not present in this map, continue
671
# Short items, we need to match based on a prefix
672
length_filter = filters.setdefault(len(key), set())
673
length_filter.add(key)
675
filters = filters.items()
676
for item in self._items.iteritems():
677
for length, length_filter in filters:
678
if item[0][:length] in length_filter:
682
for item in self._items.iteritems():
685
def _key_value_len(self, key, value):
686
# TODO: Should probably be done without actually joining the key, but
687
# then that can be done via the C extension
688
return (len(self._serialise_key(key)) + 1
689
+ len(str(value.count('\n'))) + 1
692
def _search_key(self, key):
693
return self._search_key_func(key)
695
def _map_no_split(self, key, value):
696
"""Map a key to a value.
698
This assumes either the key does not already exist, or you have already
699
removed its size and length from self.
701
:return: True if adding this node should cause us to split.
703
self._items[key] = value
704
self._raw_size += self._key_value_len(key, value)
706
serialised_key = self._serialise_key(key)
707
if self._common_serialised_prefix is None:
708
self._common_serialised_prefix = serialised_key
710
self._common_serialised_prefix = self.common_prefix(
711
self._common_serialised_prefix, serialised_key)
712
search_key = self._search_key(key)
713
if self._search_prefix is _unknown:
714
self._compute_search_prefix()
715
if self._search_prefix is None:
716
self._search_prefix = search_key
718
self._search_prefix = self.common_prefix(
719
self._search_prefix, search_key)
721
and self._maximum_size
722
and self._current_size() > self._maximum_size):
723
# Check to see if all of the search_keys for this node are
724
# identical. We allow the node to grow under that circumstance
725
# (we could track this as common state, but it is infrequent)
726
if (search_key != self._search_prefix
727
or not self._are_search_keys_identical()):
731
def _split(self, store):
732
"""We have overflowed.
734
Split this node into multiple LeafNodes, return it up the stack so that
735
the next layer creates a new InternalNode and references the new nodes.
737
:return: (common_serialised_prefix, [(node_serialised_prefix, node)])
739
assert self._search_prefix is not _unknown
740
common_prefix = self._search_prefix
741
split_at = len(common_prefix) + 1
743
for key, value in self._items.iteritems():
744
search_key = self._search_key(key)
745
prefix = search_key[:split_at]
746
# TODO: Generally only 1 key can be exactly the right length,
747
# which means we can only have 1 key in the node pointed
748
# at by the 'prefix\0' key. We might want to consider
749
# folding it into the containing InternalNode rather than
750
# having a fixed length-1 node.
751
# Note this is probably not true for hash keys, as they
752
# may get a '\00' node anywhere, but won't have keys of
754
if len(prefix) < split_at:
755
prefix += '\x00'*(split_at - len(prefix))
756
if prefix not in result:
757
node = LeafNode(search_key_func=self._search_key_func)
758
node.set_maximum_size(self._maximum_size)
759
node._key_width = self._key_width
760
result[prefix] = node
762
node = result[prefix]
763
node.map(store, key, value)
764
return common_prefix, result.items()
766
def map(self, store, key, value):
767
"""Map key to value."""
768
if key in self._items:
769
self._raw_size -= self._key_value_len(key, self._items[key])
772
if self._map_no_split(key, value):
773
return self._split(store)
775
assert self._search_prefix is not _unknown
776
return self._search_prefix, [("", self)]
778
def serialise(self, store):
779
"""Serialise the LeafNode to store.
781
:param store: A VersionedFiles honouring the CHK extensions.
782
:return: An iterable of the keys inserted by this operation.
784
lines = ["chkleaf:\n"]
785
lines.append("%d\n" % self._maximum_size)
786
lines.append("%d\n" % self._key_width)
787
lines.append("%d\n" % self._len)
788
if self._common_serialised_prefix is None:
790
if len(self._items) != 0:
791
raise AssertionError('If _common_serialised_prefix is None'
792
' we should have no items')
794
lines.append('%s\n' % (self._common_serialised_prefix,))
795
prefix_len = len(self._common_serialised_prefix)
796
for key, value in sorted(self._items.items()):
797
# Always add a final newline
798
value_lines = osutils.chunks_to_lines([value + '\n'])
799
serialized = "%s\x00%s\n" % (self._serialise_key(key),
801
if not serialized.startswith(self._common_serialised_prefix):
802
raise AssertionError('We thought the common prefix was %r'
803
' but entry %r does not have it in common'
804
% (self._common_serialised_prefix, serialized))
805
lines.append(serialized[prefix_len:])
806
lines.extend(value_lines)
807
sha1, _, _ = store.add_lines((None,), (), lines)
808
self._key = ("sha1:" + sha1,)
809
bytes = ''.join(lines)
810
if len(bytes) != self._current_size():
811
raise AssertionError('Invalid _current_size')
812
_page_cache.add(self._key, bytes)
816
"""Return the references to other CHK's held by this node."""
819
def _compute_search_prefix(self):
820
"""Determine the common search prefix for all keys in this node.
822
:return: A bytestring of the longest search key prefix that is
823
unique within this node.
825
search_keys = [self._search_key_func(key) for key in self._items]
826
self._search_prefix = self.common_prefix_for_keys(search_keys)
827
return self._search_prefix
829
def _are_search_keys_identical(self):
830
"""Check to see if the search keys for all entries are the same.
832
When using a hash as the search_key it is possible for non-identical
833
keys to collide. If that happens enough, we may try overflow a
834
LeafNode, but as all are collisions, we must not split.
836
common_search_key = None
837
for key in self._items:
838
search_key = self._search_key(key)
839
if common_search_key is None:
840
common_search_key = search_key
841
elif search_key != common_search_key:
845
def _compute_serialised_prefix(self):
846
"""Determine the common prefix for serialised keys in this node.
848
:return: A bytestring of the longest serialised key prefix that is
849
unique within this node.
851
serialised_keys = [self._serialise_key(key) for key in self._items]
852
self._common_serialised_prefix = self.common_prefix_for_keys(
854
return self._common_serialised_prefix
856
def unmap(self, store, key):
857
"""Unmap key from the node."""
859
self._raw_size -= self._key_value_len(key, self._items[key])
861
trace.mutter("key %s not found in %r", key, self._items)
866
# Recompute from scratch
867
self._compute_search_prefix()
868
self._compute_serialised_prefix()
872
class InternalNode(Node):
873
"""A node that contains references to other nodes.
875
An InternalNode is responsible for mapping search key prefixes to child
878
:ivar _items: serialised_key => node dictionary. node may be a tuple,
879
LeafNode or InternalNode.
882
def __init__(self, prefix='', search_key_func=None):
884
# The size of an internalnode with default values and no children.
885
# How many octets key prefixes within this node are.
887
self._search_prefix = prefix
888
if search_key_func is None:
889
self._search_key_func = _search_key_plain
891
self._search_key_func = search_key_func
893
def add_node(self, prefix, node):
894
"""Add a child node with prefix prefix, and node node.
896
:param prefix: The search key prefix for node.
897
:param node: The node being added.
899
if self._search_prefix is None:
900
raise AssertionError("_search_prefix should not be None")
901
if not prefix.startswith(self._search_prefix):
902
raise AssertionError("prefixes mismatch: %s must start with %s"
903
% (prefix,self._search_prefix))
904
if len(prefix) != len(self._search_prefix) + 1:
905
raise AssertionError("prefix wrong length: len(%s) is not %d" %
906
(prefix, len(self._search_prefix) + 1))
907
self._len += len(node)
908
if not len(self._items):
909
self._node_width = len(prefix)
910
if self._node_width != len(self._search_prefix) + 1:
911
raise AssertionError("node width mismatch: %d is not %d" %
912
(self._node_width, len(self._search_prefix) + 1))
913
self._items[prefix] = node
916
def _current_size(self):
917
"""Answer the current serialised size of this node."""
918
return (self._raw_size + len(str(self._len)) + len(str(self._key_width)) +
919
len(str(self._maximum_size)))
922
def deserialise(klass, bytes, key, search_key_func=None):
923
"""Deserialise bytes to an InternalNode, with key key.
925
:param bytes: The bytes of the node.
926
:param key: The key that the serialised node has.
927
:return: An InternalNode instance.
929
return _deserialise_internal_node(bytes, key,
930
search_key_func=search_key_func)
932
def iteritems(self, store, key_filter=None):
933
for node, node_filter in self._iter_nodes(store, key_filter=key_filter):
934
for item in node.iteritems(store, key_filter=node_filter):
937
def _iter_nodes(self, store, key_filter=None, batch_size=None):
938
"""Iterate over node objects which match key_filter.
940
:param store: A store to use for accessing content.
941
:param key_filter: A key filter to filter nodes. Only nodes that might
942
contain a key in key_filter will be returned.
943
:param batch_size: If not None, then we will return the nodes that had
944
to be read using get_record_stream in batches, rather than reading
946
:return: An iterable of nodes. This function does not have to be fully
947
consumed. (There will be no pending I/O when items are being returned.)
949
# Map from chk key ('sha1:...',) to (prefix, key_filter)
950
# prefix is the key in self._items to use, key_filter is the key_filter
951
# entries that would match this node
953
if key_filter is None:
954
for prefix, node in self._items.iteritems():
955
if type(node) == tuple:
956
keys[node] = (prefix, None)
963
for key in key_filter:
964
search_key = self._search_prefix_filter(key)
965
length_filter = length_filters.setdefault(
966
len(search_key), set())
967
length_filter.add(search_key)
968
prefix_to_keys.setdefault(search_key, []).append(key)
969
length_filters = length_filters.items()
970
for prefix, node in self._items.iteritems():
972
for length, length_filter in length_filters:
973
sub_prefix = prefix[:length]
974
if sub_prefix in length_filter:
975
node_key_filter.extend(prefix_to_keys[sub_prefix])
976
if node_key_filter: # this key matched something, yield it
977
if type(node) == tuple:
978
keys[node] = (prefix, node_key_filter)
980
yield node, node_key_filter
982
# Look in the page cache for some more bytes
986
bytes = _page_cache[key]
990
node = _deserialise(bytes, key,
991
search_key_func=self._search_key_func)
992
prefix, node_key_filter = keys[key]
993
self._items[prefix] = node
995
yield node, node_key_filter
996
for key in found_keys:
999
# demand load some pages.
1000
if batch_size is None:
1001
# Read all the keys in
1002
batch_size = len(keys)
1003
key_order = list(keys)
1004
for batch_start in range(0, len(key_order), batch_size):
1005
batch = key_order[batch_start:batch_start + batch_size]
1006
# We have to fully consume the stream so there is no pending
1007
# I/O, so we buffer the nodes for now.
1008
stream = store.get_record_stream(batch, 'unordered', True)
1009
node_and_filters = []
1010
for record in stream:
1011
bytes = record.get_bytes_as('fulltext')
1012
node = _deserialise(bytes, record.key,
1013
search_key_func=self._search_key_func)
1014
prefix, node_key_filter = keys[record.key]
1015
node_and_filters.append((node, node_key_filter))
1016
self._items[prefix] = node
1017
_page_cache.add(record.key, bytes)
1018
for info in node_and_filters:
1021
def map(self, store, key, value):
1022
"""Map key to value."""
1023
if not len(self._items):
1024
raise AssertionError("can't map in an empty InternalNode.")
1025
search_key = self._search_key(key)
1026
if self._node_width != len(self._search_prefix) + 1:
1027
raise AssertionError("node width mismatch: %d is not %d" %
1028
(self._node_width, len(self._search_prefix) + 1))
1029
if not search_key.startswith(self._search_prefix):
1030
# This key doesn't fit in this index, so we need to split at the
1031
# point where it would fit, insert self into that internal node,
1032
# and then map this key into that node.
1033
new_prefix = self.common_prefix(self._search_prefix,
1035
new_parent = InternalNode(new_prefix,
1036
search_key_func=self._search_key_func)
1037
new_parent.set_maximum_size(self._maximum_size)
1038
new_parent._key_width = self._key_width
1039
new_parent.add_node(self._search_prefix[:len(new_prefix)+1],
1041
return new_parent.map(store, key, value)
1042
children = [node for node, _
1043
in self._iter_nodes(store, key_filter=[key])]
1048
child = self._new_child(search_key, LeafNode)
1049
old_len = len(child)
1050
if type(child) is LeafNode:
1051
old_size = child._current_size()
1054
prefix, node_details = child.map(store, key, value)
1055
if len(node_details) == 1:
1056
# child may have shrunk, or might be a new node
1057
child = node_details[0][1]
1058
self._len = self._len - old_len + len(child)
1059
self._items[search_key] = child
1062
if type(child) is LeafNode:
1063
if old_size is None:
1064
# The old node was an InternalNode which means it has now
1065
# collapsed, so we need to check if it will chain to a
1066
# collapse at this level.
1067
trace.mutter("checking remap as InternalNode -> LeafNode")
1068
new_node = self._check_remap(store)
1070
# If the LeafNode has shrunk in size, we may want to run
1071
# a remap check. Checking for a remap is expensive though
1072
# and the frequency of a successful remap is very low.
1073
# Shrinkage by small amounts is common, so we only do the
1074
# remap check if the new_size is low or the shrinkage
1075
# amount is over a configurable limit.
1076
new_size = child._current_size()
1077
shrinkage = old_size - new_size
1078
if (shrinkage > 0 and new_size < _INTERESTING_NEW_SIZE
1079
or shrinkage > _INTERESTING_SHRINKAGE_LIMIT):
1081
"checking remap as size shrunk by %d to be %d",
1082
shrinkage, new_size)
1083
new_node = self._check_remap(store)
1084
if new_node._search_prefix is None:
1085
raise AssertionError("_search_prefix should not be None")
1086
return new_node._search_prefix, [('', new_node)]
1087
# child has overflown - create a new intermediate node.
1088
# XXX: This is where we might want to try and expand our depth
1089
# to refer to more bytes of every child (which would give us
1090
# multiple pointers to child nodes, but less intermediate nodes)
1091
child = self._new_child(search_key, InternalNode)
1092
child._search_prefix = prefix
1093
for split, node in node_details:
1094
child.add_node(split, node)
1095
self._len = self._len - old_len + len(child)
1097
return self._search_prefix, [("", self)]
1099
def _new_child(self, search_key, klass):
1100
"""Create a new child node of type klass."""
1102
child.set_maximum_size(self._maximum_size)
1103
child._key_width = self._key_width
1104
child._search_key_func = self._search_key_func
1105
self._items[search_key] = child
1108
def serialise(self, store):
1109
"""Serialise the node to store.
1111
:param store: A VersionedFiles honouring the CHK extensions.
1112
:return: An iterable of the keys inserted by this operation.
1114
for node in self._items.itervalues():
1115
if type(node) == tuple:
1116
# Never deserialised.
1118
if node._key is not None:
1121
for key in node.serialise(store):
1123
lines = ["chknode:\n"]
1124
lines.append("%d\n" % self._maximum_size)
1125
lines.append("%d\n" % self._key_width)
1126
lines.append("%d\n" % self._len)
1127
if self._search_prefix is None:
1128
raise AssertionError("_search_prefix should not be None")
1129
lines.append('%s\n' % (self._search_prefix,))
1130
prefix_len = len(self._search_prefix)
1131
for prefix, node in sorted(self._items.items()):
1132
if type(node) == tuple:
1136
serialised = "%s\x00%s\n" % (prefix, key)
1137
if not serialised.startswith(self._search_prefix):
1138
raise AssertionError("prefixes mismatch: %s must start with %s"
1139
% (serialised, self._search_prefix))
1140
lines.append(serialised[prefix_len:])
1141
sha1, _, _ = store.add_lines((None,), (), lines)
1142
self._key = ("sha1:" + sha1,)
1143
_page_cache.add(self._key, ''.join(lines))
1146
def _search_key(self, key):
1147
"""Return the serialised key for key in this node."""
1148
# search keys are fixed width. All will be self._node_width wide, so we
1150
return (self._search_key_func(key) + '\x00'*self._node_width)[:self._node_width]
1152
def _search_prefix_filter(self, key):
1153
"""Serialise key for use as a prefix filter in iteritems."""
1154
return self._search_key_func(key)[:self._node_width]
1156
def _split(self, offset):
1157
"""Split this node into smaller nodes starting at offset.
1159
:param offset: The offset to start the new child nodes at.
1160
:return: An iterable of (prefix, node) tuples. prefix is a byte
1161
prefix for reaching node.
1163
if offset >= self._node_width:
1164
for node in self._items.values():
1165
for result in node._split(offset):
1168
for key, node in self._items.items():
1172
"""Return the references to other CHK's held by this node."""
1173
if self._key is None:
1174
raise AssertionError("unserialised nodes have no refs.")
1176
for value in self._items.itervalues():
1177
if type(value) == tuple:
1180
refs.append(value.key())
1183
def _compute_search_prefix(self, extra_key=None):
1184
"""Return the unique key prefix for this node.
1186
:return: A bytestring of the longest search key prefix that is
1187
unique within this node.
1189
self._search_prefix = self.common_prefix_for_keys(self._items)
1190
return self._search_prefix
1192
def unmap(self, store, key, check_remap=True):
1193
"""Remove key from this node and it's children."""
1194
if not len(self._items):
1195
raise AssertionError("can't unmap in an empty InternalNode.")
1196
children = [node for node, _
1197
in self._iter_nodes(store, key_filter=[key])]
1203
unmapped = child.unmap(store, key)
1205
search_key = self._search_key(key)
1206
if len(unmapped) == 0:
1207
# All child nodes are gone, remove the child:
1208
del self._items[search_key]
1211
# Stash the returned node
1212
self._items[search_key] = unmapped
1213
if len(self._items) == 1:
1214
# this node is no longer needed:
1215
return self._items.values()[0]
1216
if type(unmapped) is InternalNode:
1219
return self._check_remap(store)
1223
def _check_remap(self, store):
1224
"""Check if all keys contained by children fit in a single LeafNode.
1226
:param store: A store to use for reading more nodes
1227
:return: Either self, or a new LeafNode which should replace self.
1229
# Logic for how we determine when we need to rebuild
1230
# 1) Implicitly unmap() is removing a key which means that the child
1231
# nodes are going to be shrinking by some extent.
1232
# 2) If all children are LeafNodes, it is possible that they could be
1233
# combined into a single LeafNode, which can then completely replace
1234
# this internal node with a single LeafNode
1235
# 3) If *one* child is an InternalNode, we assume it has already done
1236
# all the work to determine that its children cannot collapse, and
1237
# we can then assume that those nodes *plus* the current nodes don't
1238
# have a chance of collapsing either.
1239
# So a very cheap check is to just say if 'unmapped' is an
1240
# InternalNode, we don't have to check further.
1242
# TODO: Another alternative is to check the total size of all known
1243
# LeafNodes. If there is some formula we can use to determine the
1244
# final size without actually having to read in any more
1245
# children, it would be nice to have. However, we have to be
1246
# careful with stuff like nodes that pull out the common prefix
1247
# of each key, as adding a new key can change the common prefix
1248
# and cause size changes greater than the length of one key.
1249
# So for now, we just add everything to a new Leaf until it
1250
# splits, as we know that will give the right answer
1251
new_leaf = LeafNode(search_key_func=self._search_key_func)
1252
new_leaf.set_maximum_size(self._maximum_size)
1253
new_leaf._key_width = self._key_width
1254
# A batch_size of 16 was chosen because:
1255
# a) In testing, a 4k page held 14 times. So if we have more than 16
1256
# leaf nodes we are unlikely to hold them in a single new leaf
1257
# node. This still allows for 1 round trip
1258
# b) With 16-way fan out, we can still do a single round trip
1259
# c) With 255-way fan out, we don't want to read all 255 and destroy
1260
# the page cache, just to determine that we really don't need it.
1261
for node, _ in self._iter_nodes(store, batch_size=16):
1262
if type(node) is InternalNode:
1263
# Without looking at any leaf nodes, we are sure
1265
for key, value in node._items.iteritems():
1266
if new_leaf._map_no_split(key, value):
1268
trace.mutter("remap generated a new LeafNode")
1272
def _deserialise(bytes, key, search_key_func):
1273
"""Helper for repositorydetails - convert bytes to a node."""
1274
if bytes.startswith("chkleaf:\n"):
1275
node = LeafNode.deserialise(bytes, key, search_key_func=search_key_func)
1276
elif bytes.startswith("chknode:\n"):
1277
node = InternalNode.deserialise(bytes, key,
1278
search_key_func=search_key_func)
1280
raise AssertionError("Unknown node type.")
1284
def _find_children_info(store, interesting_keys, uninteresting_keys, pb):
1285
"""Read the associated records, and determine what is interesting."""
1286
uninteresting_keys = set(uninteresting_keys)
1287
chks_to_read = uninteresting_keys.union(interesting_keys)
1288
next_uninteresting = set()
1289
next_interesting = set()
1290
uninteresting_items = set()
1291
interesting_items = set()
1292
interesting_records = []
1293
# records_read = set()
1294
for record in store.get_record_stream(chks_to_read, 'unordered', True):
1295
# records_read.add(record.key())
1298
bytes = record.get_bytes_as('fulltext')
1299
# We don't care about search_key_func for this code, because we only
1300
# care about external references.
1301
node = _deserialise(bytes, record.key, search_key_func=None)
1302
if record.key in uninteresting_keys:
1303
if type(node) is InternalNode:
1304
next_uninteresting.update(node.refs())
1306
# We know we are at a LeafNode, so we can pass None for the
1308
uninteresting_items.update(node.iteritems(None))
1310
interesting_records.append(record)
1311
if type(node) is InternalNode:
1312
next_interesting.update(node.refs())
1314
interesting_items.update(node.iteritems(None))
1315
# TODO: Filter out records that have already been read, as node splitting
1316
# can cause us to reference the same nodes via shorter and longer
1318
return (next_uninteresting, uninteresting_items,
1319
next_interesting, interesting_records, interesting_items)
1322
def _find_all_uninteresting(store, interesting_root_keys,
1323
uninteresting_root_keys, adapter, pb):
1324
"""Determine the full set of uninteresting keys."""
1325
# What about duplicates between interesting_root_keys and
1326
# uninteresting_root_keys?
1327
if not uninteresting_root_keys:
1328
# Shortcut case. We know there is nothing uninteresting to filter out
1329
# So we just let the rest of the algorithm do the work
1330
# We know there is nothing uninteresting, and we didn't have to read
1331
# any interesting records yet.
1332
return (set(), set(), set(interesting_root_keys), [], set())
1333
all_uninteresting_chks = set(uninteresting_root_keys)
1334
all_uninteresting_items = set()
1336
# First step, find the direct children of both the interesting and
1338
(uninteresting_keys, uninteresting_items,
1339
interesting_keys, interesting_records,
1340
interesting_items) = _find_children_info(store, interesting_root_keys,
1341
uninteresting_root_keys,
1343
all_uninteresting_chks.update(uninteresting_keys)
1344
all_uninteresting_items.update(uninteresting_items)
1345
del uninteresting_items
1346
# Note: Exact matches between interesting and uninteresting do not need
1347
# to be search further. Non-exact matches need to be searched in case
1348
# there is a future exact-match
1349
uninteresting_keys.difference_update(interesting_keys)
1351
# Second, find the full set of uninteresting bits reachable by the
1352
# uninteresting roots
1353
chks_to_read = uninteresting_keys
1356
for record in store.get_record_stream(chks_to_read, 'unordered', False):
1357
# TODO: Handle 'absent'
1361
bytes = record.get_bytes_as('fulltext')
1362
except errors.UnavailableRepresentation:
1363
bytes = adapter.get_bytes(record)
1364
# We don't care about search_key_func for this code, because we
1365
# only care about external references.
1366
node = _deserialise(bytes, record.key, search_key_func=None)
1367
if type(node) is InternalNode:
1368
# uninteresting_prefix_chks.update(node._items.iteritems())
1369
chks = node._items.values()
1370
# TODO: We remove the entries that are already in
1371
# uninteresting_chks ?
1372
next_chks.update(chks)
1373
all_uninteresting_chks.update(chks)
1375
all_uninteresting_items.update(node._items.iteritems())
1376
chks_to_read = next_chks
1377
return (all_uninteresting_chks, all_uninteresting_items,
1378
interesting_keys, interesting_records, interesting_items)
1381
def iter_interesting_nodes(store, interesting_root_keys,
1382
uninteresting_root_keys, pb=None):
1383
"""Given root keys, find interesting nodes.
1385
Evaluate nodes referenced by interesting_root_keys. Ones that are also
1386
referenced from uninteresting_root_keys are not considered interesting.
1388
:param interesting_root_keys: keys which should be part of the
1389
"interesting" nodes (which will be yielded)
1390
:param uninteresting_root_keys: keys which should be filtered out of the
1393
(interesting records, interesting chk's, interesting key:values)
1395
# TODO: consider that it may be more memory efficient to use the 20-byte
1396
# sha1 string, rather than tuples of hexidecimal sha1 strings.
1397
# TODO: Try to factor out a lot of the get_record_stream() calls into a
1398
# helper function similar to _read_bytes. This function should be
1399
# able to use nodes from the _page_cache as well as actually
1400
# requesting bytes from the store.
1402
# A way to adapt from the compressed texts back into fulltexts
1403
# In a way, this seems like a layering inversion to have CHKMap know the
1404
# details of versionedfile
1405
adapter_class = versionedfile.adapter_registry.get(
1406
('knit-ft-gz', 'fulltext'))
1407
adapter = adapter_class(store)
1409
(all_uninteresting_chks, all_uninteresting_items, interesting_keys,
1410
interesting_records, interesting_items) = _find_all_uninteresting(store,
1411
interesting_root_keys, uninteresting_root_keys, adapter, pb)
1413
# Now that we know everything uninteresting, we can yield information from
1415
interesting_items.difference_update(all_uninteresting_items)
1416
records = dict((record.key, record) for record in interesting_records
1417
if record.key not in all_uninteresting_chks)
1418
if records or interesting_items:
1419
yield records, interesting_items
1420
interesting_keys.difference_update(all_uninteresting_chks)
1421
# TODO: We need a test for this
1422
# This handles the case where after a split, one of the child trees
1423
# is identical to one of the interesting root keys. Like if you had a
1424
# leaf node, with "aa" "ab", that then overflowed at "bb". You would
1425
# get a new internal node, but it would have one leaf node with
1426
# ("aa", "ab") and another leaf node with "bb". And you don't want to
1427
# re-transmit that ("aa", "ab") node again
1428
all_uninteresting_chks.update(interesting_root_keys)
1430
chks_to_read = interesting_keys
1434
for record in store.get_record_stream(chks_to_read, 'unordered', False):
1437
pb.update('find chk pages', counter)
1438
# TODO: Handle 'absent'?
1440
bytes = record.get_bytes_as('fulltext')
1441
except errors.UnavailableRepresentation:
1442
bytes = adapter.get_bytes(record)
1443
# We don't care about search_key_func for this code, because we
1444
# only care about external references.
1445
node = _deserialise(bytes, record.key, search_key_func=None)
1446
if type(node) is InternalNode:
1447
# all_uninteresting_chks grows large, as it lists all nodes we
1448
# don't want to process (including already seen interesting
1450
# small.difference_update(large) scales O(large), but
1451
# small.difference(large) scales O(small).
1452
# Also, we know we just _deserialised this node, so we can
1453
# access the dict directly.
1454
chks = set(node._items.itervalues()).difference(
1455
all_uninteresting_chks)
1456
# Is set() and .difference_update better than:
1457
# chks = [chk for chk in node.refs()
1458
# if chk not in all_uninteresting_chks]
1459
next_chks.update(chks)
1460
# These are now uninteresting everywhere else
1461
all_uninteresting_chks.update(chks)
1462
interesting_items = []
1464
interesting_items = [item for item in node._items.iteritems()
1465
if item not in all_uninteresting_items]
1466
# TODO: Do we need to filter out items that we have already
1467
# seen on other pages? We don't really want to buffer the
1468
# whole thing, but it does mean that callers need to
1469
# understand they may get duplicate values.
1470
# all_uninteresting_items.update(interesting_items)
1471
yield {record.key: record}, interesting_items
1472
chks_to_read = next_chks
1476
from bzrlib._chk_map_pyx import (
1479
_deserialise_leaf_node,
1480
_deserialise_internal_node,
1483
from bzrlib._chk_map_py import (
1486
_deserialise_leaf_node,
1487
_deserialise_internal_node,
1489
search_key_registry.register('hash-16-way', _search_key_16)
1490
search_key_registry.register('hash-255-way', _search_key_255)