1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
# Copyright (C) 2005-2009, 2016 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
"""Tests for topological sort."""
import pprint
from bzrlib.tests import TestCase
from bzrlib.tsort import topo_sort, TopoSorter, MergeSorter, merge_sort
from bzrlib.errors import GraphCycleError
from bzrlib.revision import NULL_REVISION
class TopoSortTests(TestCase):
def assertSortAndIterate(self, graph, result_list):
"""Check that sorting and iter_topo_order on graph works."""
self.assertEqual(result_list, topo_sort(graph))
self.assertEqual(result_list,
list(TopoSorter(graph).iter_topo_order()))
def assertSortAndIterateRaise(self, exception_type, graph):
"""Try both iterating and topo_sorting graph and expect an exception."""
self.assertRaises(exception_type, topo_sort, graph)
self.assertRaises(exception_type,
list,
TopoSorter(graph).iter_topo_order())
def assertSortAndIterateOrder(self, graph):
"""Check topo_sort and iter_topo_order is genuinely topological order.
For every child in the graph, check if it comes after all of it's
parents.
"""
sort_result = topo_sort(graph)
iter_result = list(TopoSorter(graph).iter_topo_order())
for (node, parents) in graph:
for parent in parents:
if sort_result.index(node) < sort_result.index(parent):
self.fail("parent %s must come before child %s:\n%s"
% (parent, node, sort_result))
if iter_result.index(node) < iter_result.index(parent):
self.fail("parent %s must come before child %s:\n%s"
% (parent, node, iter_result))
def test_tsort_empty(self):
"""TopoSort empty list"""
self.assertSortAndIterate([], [])
def test_tsort_easy(self):
"""TopoSort list with one node"""
self.assertSortAndIterate({0: []}.items(), [0])
def test_tsort_cycle(self):
"""TopoSort traps graph with cycles"""
self.assertSortAndIterateRaise(GraphCycleError,
{0: [1],
1: [0]}.items())
def test_tsort_cycle_2(self):
"""TopoSort traps graph with longer cycle"""
self.assertSortAndIterateRaise(GraphCycleError,
{0: [1],
1: [2],
2: [0]}.items())
def test_topo_sort_cycle_with_tail(self):
"""TopoSort traps graph with longer cycle"""
self.assertSortAndIterateRaise(GraphCycleError,
{0: [1],
1: [2],
2: [3, 4],
3: [0],
4: []}.items())
def test_tsort_1(self):
"""TopoSort simple nontrivial graph"""
self.assertSortAndIterate({0: [3],
1: [4],
2: [1, 4],
3: [],
4: [0, 3]}.items(),
[3, 0, 4, 1, 2])
def test_tsort_partial(self):
"""Topological sort with partial ordering.
Multiple correct orderings are possible, so test for
correctness, not for exact match on the resulting list.
"""
self.assertSortAndIterateOrder([(0, []),
(1, [0]),
(2, [0]),
(3, [0]),
(4, [1, 2, 3]),
(5, [1, 2]),
(6, [1, 2]),
(7, [2, 3]),
(8, [0, 1, 4, 5, 6])])
def test_tsort_unincluded_parent(self):
"""Sort nodes, but don't include some parents in the output"""
self.assertSortAndIterate([(0, [1]),
(1, [2])],
[1, 0])
class MergeSortTests(TestCase):
def assertSortAndIterate(self, graph, branch_tip, result_list,
generate_revno, mainline_revisions=None):
"""Check that merge based sorting and iter_topo_order on graph works."""
value = merge_sort(graph, branch_tip,
mainline_revisions=mainline_revisions,
generate_revno=generate_revno)
if result_list != value:
self.assertEqualDiff(pprint.pformat(result_list),
pprint.pformat(value))
self.assertEqual(result_list,
list(MergeSorter(
graph,
branch_tip,
mainline_revisions=mainline_revisions,
generate_revno=generate_revno,
).iter_topo_order()))
def test_merge_sort_empty(self):
# sorting of an emptygraph does not error
self.assertSortAndIterate({}, None, [], False)
self.assertSortAndIterate({}, None, [], True)
self.assertSortAndIterate({}, NULL_REVISION, [], False)
self.assertSortAndIterate({}, NULL_REVISION, [], True)
def test_merge_sort_not_empty_no_tip(self):
# merge sorting of a branch starting with None should result
# in an empty list: no revisions are dragged in.
self.assertSortAndIterate({0: []}.items(), None, [], False)
self.assertSortAndIterate({0: []}.items(), None, [], True)
def test_merge_sort_one_revision(self):
# sorting with one revision as the tip returns the correct fields:
# sequence - 0, revision id, merge depth - 0, end_of_merge
self.assertSortAndIterate({'id': []}.items(),
'id',
[(0, 'id', 0, True)],
False)
self.assertSortAndIterate({'id': []}.items(),
'id',
[(0, 'id', 0, (1,), True)],
True)
def test_sequence_numbers_increase_no_merges(self):
# emit a few revisions with no merges to check the sequence
# numbering works in trivial cases
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['B']}.items(),
'C',
[(0, 'C', 0, False),
(1, 'B', 0, False),
(2, 'A', 0, True),
],
False
)
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['B']}.items(),
'C',
[(0, 'C', 0, (3,), False),
(1, 'B', 0, (2,), False),
(2, 'A', 0, (1,), True),
],
True
)
def test_sequence_numbers_increase_with_merges(self):
# test that sequence numbers increase across merges
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['A', 'B']}.items(),
'C',
[(0, 'C', 0, False),
(1, 'B', 1, True),
(2, 'A', 0, True),
],
False
)
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['A', 'B']}.items(),
'C',
[(0, 'C', 0, (2,), False),
(1, 'B', 1, (1,1,1), True),
(2, 'A', 0, (1,), True),
],
True
)
def test_merge_sort_race(self):
# A
# |
# B-.
# |\ \
# | | C
# | |/
# | D
# |/
# F
graph = {'A': [],
'B': ['A'],
'C': ['B'],
'D': ['B', 'C'],
'F': ['B', 'D'],
}
self.assertSortAndIterate(graph, 'F',
[(0, 'F', 0, (3,), False),
(1, 'D', 1, (2,2,1), False),
(2, 'C', 2, (2,1,1), True),
(3, 'B', 0, (2,), False),
(4, 'A', 0, (1,), True),
], True)
# A
# |
# B-.
# |\ \
# | X C
# | |/
# | D
# |/
# F
graph = {'A': [],
'B': ['A'],
'C': ['B'],
'X': ['B'],
'D': ['X', 'C'],
'F': ['B', 'D'],
}
self.assertSortAndIterate(graph, 'F',
[(0, 'F', 0, (3,), False),
(1, 'D', 1, (2,1,2), False),
(2, 'C', 2, (2,2,1), True),
(3, 'X', 1, (2,1,1), True),
(4, 'B', 0, (2,), False),
(5, 'A', 0, (1,), True),
], True)
def test_merge_depth_with_nested_merges(self):
# the merge depth marker should reflect the depth of the revision
# in terms of merges out from the mainline
# revid, depth, parents:
# A 0 [D, B]
# B 1 [C, F]
# C 1 [H]
# D 0 [H, E]
# E 1 [G, F]
# F 2 [G]
# G 1 [H]
# H 0
self.assertSortAndIterate(
{'A': ['D', 'B'],
'B': ['C', 'F'],
'C': ['H'],
'D': ['H', 'E'],
'E': ['G', 'F'],
'F': ['G'],
'G': ['H'],
'H': []
}.items(),
'A',
[(0, 'A', 0, False),
(1, 'B', 1, False),
(2, 'C', 1, True),
(3, 'D', 0, False),
(4, 'E', 1, False),
(5, 'F', 2, True),
(6, 'G', 1, True),
(7, 'H', 0, True),
],
False
)
self.assertSortAndIterate(
{'A': ['D', 'B'],
'B': ['C', 'F'],
'C': ['H'],
'D': ['H', 'E'],
'E': ['G', 'F'],
'F': ['G'],
'G': ['H'],
'H': []
}.items(),
'A',
[(0, 'A', 0, (3,), False),
(1, 'B', 1, (1,3,2), False),
(2, 'C', 1, (1,3,1), True),
(3, 'D', 0, (2,), False),
(4, 'E', 1, (1,1,2), False),
(5, 'F', 2, (1,2,1), True),
(6, 'G', 1, (1,1,1), True),
(7, 'H', 0, (1,), True),
],
True
)
def test_dotted_revnos_with_simple_merges(self):
# A 1
# |\
# B C 2, 1.1.1
# | |\
# D E F 3, 1.1.2, 1.2.1
# |/ /|
# G H I 4, 1.2.2, 1.3.1
# |/ /
# J K 5, 1.3.2
# |/
# L 6
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['A'],
'D': ['B'],
'E': ['C'],
'F': ['C'],
'G': ['D', 'E'],
'H': ['F'],
'I': ['F'],
'J': ['G', 'H'],
'K': ['I'],
'L': ['J', 'K'],
}.items(),
'L',
[(0, 'L', 0, (6,), False),
(1, 'K', 1, (1,3,2), False),
(2, 'I', 1, (1,3,1), True),
(3, 'J', 0, (5,), False),
(4, 'H', 1, (1,2,2), False),
(5, 'F', 1, (1,2,1), True),
(6, 'G', 0, (4,), False),
(7, 'E', 1, (1,1,2), False),
(8, 'C', 1, (1,1,1), True),
(9, 'D', 0, (3,), False),
(10, 'B', 0, (2,), False),
(11, 'A', 0, (1,), True),
],
True
)
# Adding a shortcut from the first revision should not change any of
# the existing numbers
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['A'],
'D': ['B'],
'E': ['C'],
'F': ['C'],
'G': ['D', 'E'],
'H': ['F'],
'I': ['F'],
'J': ['G', 'H'],
'K': ['I'],
'L': ['J', 'K'],
'M': ['A'],
'N': ['L', 'M'],
}.items(),
'N',
[(0, 'N', 0, (7,), False),
(1, 'M', 1, (1,4,1), True),
(2, 'L', 0, (6,), False),
(3, 'K', 1, (1,3,2), False),
(4, 'I', 1, (1,3,1), True),
(5, 'J', 0, (5,), False),
(6, 'H', 1, (1,2,2), False),
(7, 'F', 1, (1,2,1), True),
(8, 'G', 0, (4,), False),
(9, 'E', 1, (1,1,2), False),
(10, 'C', 1, (1,1,1), True),
(11, 'D', 0, (3,), False),
(12, 'B', 0, (2,), False),
(13, 'A', 0, (1,), True),
],
True
)
def test_end_of_merge_not_last_revision_in_branch(self):
# within a branch only the last revision gets an
# end of merge marker.
self.assertSortAndIterate(
{'A': ['B'],
'B': [],
},
'A',
[(0, 'A', 0, False),
(1, 'B', 0, True)
],
False
)
self.assertSortAndIterate(
{'A': ['B'],
'B': [],
},
'A',
[(0, 'A', 0, (2,), False),
(1, 'B', 0, (1,), True)
],
True
)
def test_end_of_merge_multiple_revisions_merged_at_once(self):
# when multiple branches are merged at once, both of their
# branch-endpoints should be listed as end-of-merge.
# Also, the order of the multiple merges should be
# left-right shown top to bottom.
# * means end of merge
# A 0 [H, B, E]
# B 1 [D, C]
# C 2 [D] *
# D 1 [H] *
# E 1 [G, F]
# F 2 [G] *
# G 1 [H] *
# H 0 [] *
self.assertSortAndIterate(
{'A': ['H', 'B', 'E'],
'B': ['D', 'C'],
'C': ['D'],
'D': ['H'],
'E': ['G', 'F'],
'F': ['G'],
'G': ['H'],
'H': [],
},
'A',
[(0, 'A', 0, False),
(1, 'B', 1, False),
(2, 'C', 2, True),
(3, 'D', 1, True),
(4, 'E', 1, False),
(5, 'F', 2, True),
(6, 'G', 1, True),
(7, 'H', 0, True),
],
False
)
self.assertSortAndIterate(
{'A': ['H', 'B', 'E'],
'B': ['D', 'C'],
'C': ['D'],
'D': ['H'],
'E': ['G', 'F'],
'F': ['G'],
'G': ['H'],
'H': [],
},
'A',
[(0, 'A', 0, (2,), False),
(1, 'B', 1, (1,3,2), False),
(2, 'C', 2, (1,4,1), True),
(3, 'D', 1, (1,3,1), True),
(4, 'E', 1, (1,1,2), False),
(5, 'F', 2, (1,2,1), True),
(6, 'G', 1, (1,1,1), True),
(7, 'H', 0, (1,), True),
],
True
)
def test_mainline_revs_partial(self):
# when a mainline_revisions list is passed this must
# override the graphs idea of mainline, and must also
# truncate the output to the specified range, if needed.
# so we test both at once: a mainline_revisions list that
# disagrees with the graph about which revs are 'mainline'
# and also truncates the output.
# graph:
# A 0 [E, B]
# B 1 [D, C]
# C 2 [D]
# D 1 [E]
# E 0
# with a mainline of NONE,E,A (the inferred one) this will show the merge
# depths above.
# with a overriden mainline of NONE,E,D,B,A it should show:
# A 0
# B 0
# C 1
# D 0
# E 0
# and thus when truncated to D,B,A it should show
# A 0
# B 0
# C 1
# because C is brought in by B in this view and D
# is the terminating revision id
# this should also preserve revision numbers: C should still be 2.1.1
self.assertSortAndIterate(
{'A': ['E', 'B'],
'B': ['D', 'C'],
'C': ['D'],
'D': ['E'],
'E': []
},
'A',
[(0, 'A', 0, False),
(1, 'B', 0, False),
(2, 'C', 1, True),
],
False,
mainline_revisions=['D', 'B', 'A']
)
self.assertSortAndIterate(
{'A': ['E', 'B'],
'B': ['D', 'C'],
'C': ['D'],
'D': ['E'],
'E': []
},
'A',
[(0, 'A', 0, (4,), False),
(1, 'B', 0, (3,), False),
(2, 'C', 1, (2,1,1), True),
],
True,
mainline_revisions=['D', 'B', 'A']
)
def test_mainline_revs_with_none(self):
# a simple test to ensure that a mainline_revs
# list which goes all the way to None works
self.assertSortAndIterate(
{'A': [],
},
'A',
[(0, 'A', 0, True),
],
False,
mainline_revisions=[None, 'A']
)
self.assertSortAndIterate(
{'A': [],
},
'A',
[(0, 'A', 0, (1,), True),
],
True,
mainline_revisions=[None, 'A']
)
def test_mainline_revs_with_ghost(self):
# We have a mainline, but the end of it is actually a ghost
# The graph that is passed to tsort has had ghosts filtered out, but
# the mainline history has not.
self.assertSortAndIterate(
{'B':[],
'C':['B']}.items(),
'C',
[(0, 'C', 0, (2,), False),
(1, 'B', 0, (1,), True),
],
True, mainline_revisions=['A', 'B', 'C'])
def test_parallel_root_sequence_numbers_increase_with_merges(self):
"""When there are parallel roots, check their revnos."""
self.assertSortAndIterate(
{'A': [],
'B': [],
'C': ['A', 'B']}.items(),
'C',
[(0, 'C', 0, (2,), False),
(1, 'B', 1, (0,1,1), True),
(2, 'A', 0, (1,), True),
],
True
)
def test_revnos_are_globally_assigned(self):
"""revnos are assigned according to the revision they derive from."""
# in this test we setup a number of branches that all derive from
# the first revision, and then merge them one at a time, which
# should give the revisions as they merge numbers still deriving from
# the revision were based on.
# merge 3: J: ['G', 'I']
# branch 3:
# I: ['H']
# H: ['A']
# merge 2: G: ['D', 'F']
# branch 2:
# F: ['E']
# E: ['A']
# merge 1: D: ['A', 'C']
# branch 1:
# C: ['B']
# B: ['A']
# root: A: []
self.assertSortAndIterate(
{'J': ['G', 'I'],
'I': ['H',],
'H': ['A'],
'G': ['D', 'F'],
'F': ['E'],
'E': ['A'],
'D': ['A', 'C'],
'C': ['B'],
'B': ['A'],
'A': [],
}.items(),
'J',
[(0, 'J', 0, (4,), False),
(1, 'I', 1, (1,3,2), False),
(2, 'H', 1, (1,3,1), True),
(3, 'G', 0, (3,), False),
(4, 'F', 1, (1,2,2), False),
(5, 'E', 1, (1,2,1), True),
(6, 'D', 0, (2,), False),
(7, 'C', 1, (1,1,2), False),
(8, 'B', 1, (1,1,1), True),
(9, 'A', 0, (1,), True),
],
True
)
def test_roots_and_sub_branches_versus_ghosts(self):
"""Extra roots and their mini branches use the same numbering.
All of them use the 0-node numbering.
"""
# A D K
# | |\ |\
# B E F L M
# | |/ |/
# C G N
# |/ |\
# H I O P
# |/ |/
# J Q
# |.---'
# R
self.assertSortAndIterate(
{'A': [],
'B': ['A'],
'C': ['B'],
'D': [],
'E': ['D'],
'F': ['D'],
'G': ['E', 'F'],
'H': ['C', 'G'],
'I': [],
'J': ['H', 'I'],
'K': [],
'L': ['K'],
'M': ['K'],
'N': ['L', 'M'],
'O': ['N'],
'P': ['N'],
'Q': ['O', 'P'],
'R': ['J', 'Q'],
}.items(),
'R',
[( 0, 'R', 0, (6,), False),
( 1, 'Q', 1, (0,4,5), False),
( 2, 'P', 2, (0,6,1), True),
( 3, 'O', 1, (0,4,4), False),
( 4, 'N', 1, (0,4,3), False),
( 5, 'M', 2, (0,5,1), True),
( 6, 'L', 1, (0,4,2), False),
( 7, 'K', 1, (0,4,1), True),
( 8, 'J', 0, (5,), False),
( 9, 'I', 1, (0,3,1), True),
(10, 'H', 0, (4,), False),
(11, 'G', 1, (0,1,3), False),
(12, 'F', 2, (0,2,1), True),
(13, 'E', 1, (0,1,2), False),
(14, 'D', 1, (0,1,1), True),
(15, 'C', 0, (3,), False),
(16, 'B', 0, (2,), False),
(17, 'A', 0, (1,), True),
],
True
)
|