1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
|
===========
Inventories
===========
.. contents::
Overview
========
Inventories provide an abstraction for talking about the shape of a tree.
Generally only tree object implementors should be concerned about entire
inventory objects and their implementation. Other common exceptions are
full-tree operations such as 'checkout', 'export' and 'import'.
In memory inventories
=====================
In memory inventories are often used in diff and status operations between
trees. We are working to reduce the number of times this occurs with 'full
tree' inventory objects, and instead use more custom tailored data structures
that allow operations on only a small amount of data regardless of the size of
the tree.
Serialization
=============
There are several variants of serialised tree shape in use by bzr. To date
these have been mostly xml based, though plugins have offered non-xml versions.
dirstate
--------
The dirstate file in a working tree includes many different tree shapes - one
for the working tree and one for each parent tree, interleaved to allow
efficient diff and status operations.
xml
---
All the xml serialized forms write to and read from a single byte string, whose
hash is then the inventory validator for the commit object.
Serialization scaling and future designs
========================================
Overall efficiency and scaling is constrained by the bottom level structure
that an inventory is stored as. We have a number of goals we want to achieve:
1. Allow commit to write less than the full tree's data in to the repository
in the general case.
2. Allow the data that is written to be calculated without examining every
versioned path in the tree.
3. Generate the exact same representation for a given inventory regardless of
the amount of history available.
4. Allow in memory deltas to be generated directly from the serialised form
without upcasting to a full in-memory representation or examining every
path in the tree. Ideally the work performed will be proportional to the
amount of changes between the trees being compared.
5. Allow fetch to determine the file texts that need to be pulled to ensure
that the entire tree can be reconstructed without having to probe every
path in the tree.
6. Allow bzr to map paths to file ids without reading the entire serialised
form. This is something that is used by commands such as merge PATH and
diff -r X PATH.
7. Let bzr map file ids to paths without reading the entire serialised form.
This is used by commands that are presenting output to the user such as
loggerhead, bzr-search, log FILENAME.
8. We want a strong validator for inventories which is cheap to generate.
Specifically we should be able to create the generator for a new commit
without processing all the data of the basis commit.
9. Testaments generation is currently size(tree), we would like to create a
new testament standard which requires less work so that signed commits
are not significantly slower than regular commits.
We have current performance and memory bugs in log -v, merge, commit, diff -r,
loggerhead and status -r which can be addressed by an inventory system
meeting these goals.
Current situation
-----------------
The xml based implementation we use today layers the inventory as a bytestring
which is stored under a single key; the bytestring is then compressed as a
delta against the bytestring of its left hand parent by the knit code.
Gap analysis:
1. Succeeds
2. Fails - generating a new xml representation needs full tree data.
3. Succeeds - the inventory layer accesses the bytestring, which is
deterministic
4. Fails - we have to reconstruct both inventories as trees and then delta
the resulting in memory objects.
5. Partial success - the revision field in the inventory can be scanned for
in both text-delta and full-bytestring form; other revision values than
those revisions which are being pulled are by definition absent.
6. Partially succeeds - with appropriate logic a path<->id map can be generated
just-in-time, but it is complex and still requires reconstructing the
entire byte-string.
7. As for 6.
8. Fails - we have to hash the entire tree in serialised form to generate
validators.
9. Fails.
Long term work
--------------
Some things are likely harder to fix incrementally than others. In particular,
goal 3 (constant canonical form) is arguably only achieved if we remove all
derived data such as the last-modified revision from the inventory itself. That
said, the last-modified appears to be in a higher level than raw serialization.
So in the medium term we will not alter the contents of inventories, only the
way that the current contents are mapped to and from disk.
Layering
--------
We desire clear and clean layers. Each layer should be as simple as we can make
it to aid in debugging and performance tuning. So where we can choose to either
write a complex layer and something simple on top of it, or two layers with
neither being as complex - then we should consider the latter choice better in
the absence of compelling reasons not to.
Some key layers we have today and can look at using or tweaking are:
* Tree objects - the abstract interface bzrlib code works in
* VersionedFiles - the optionally delta compressing key->bytes storage
interface.
* Inventory - the abstract interface that many tree operations are written in.
These layers are probably sufficient with minor tweaking. We may want to add
additional modules/implementations of one or more layers, but that doesn't
really require new layers to be exposed.
Design elements to achieve the goals in a future inventory implementation
-------------------------------------------------------------------------
* Split up the logical document into smaller serialised fragements. For
instance hash buckets or nodes in a tree of some sort. By serialising in
smaller units, we can increase the number of smaller units rather than
their size as the tree grows; as long as two similar trees have similar
serialised forms, the amount of different content should be quite high.
* Use fragment identifiers that are independent of revision id, so that
serialisation of two related trees generates overlap in the keyspace
for fragments without requiring explicit delta logic. Content Hash Keys
(e.g. ('sha1:ABCDEF0123456789...',) are useful here because of the ability
to assign them without reference to history.)
* Store the fragments in our existing VersionedFiles store. Adding an index
for them. Have the serialised form be uncompressed utf8, so that delta logic
in the VersionedFiles layer can be used. We may need to provide some sort
of hinting mechanism to get good compression - but the trivially available
zlib compression of knits-with-no-deltas is probably a good start.
* Item_keys_introduced_by is innately a history-using function; we can
reproduce the text-key finding logic by doing a tree diff between any tree
and an older tree - that will limit the amount of data we need to process
to something proportional to the difference and the size of each fragment.
When checking many versions we can track which fragments we have examined
and only look at new unique ones as each version is examined in turn.
* Working tree to arbitrary history revision deltas/comparisons can be scaled
up by doing a two-step (fixed at two!) delta combining - delta(tree, basis)
and then combine that with delta(basis, arbitrary_revision) using the
repositories ability to get a delta cheaply.
* The key primitives we need seem to be:
* canonical_form(inventory) -> fragments
* delta(inventory, inventory) -> inventory_delta
* apply(inventory_delta, canonical_form) -> fragments
* Having very many small fragments is likely to cause a high latency
multiplier unless we are careful.
* Possible designs to investigate - a hash bucket approach, radix trees,
B+ trees, directory trees (with splits inside a directory?).
Hash bucket based inventories
=============================
Overview
--------
We store two maps - fileid:inventory_entry and path:fileid, in a stable
hash trie, stored in densly packed fragments. We pack keys into the map
densely up the tree, with a single canonical form for any given tree. This is
more stable than simple fixed size buckets, which prevents corner cases where
the tree size varies right on a bucket size border. (Note that such cases are
not a fatal flaw - the two forms would both be present in the repository, so
only a small amount of data would be written at each transition - but a full
tree reprocess would be needed at each tree operation across the boundary, and
thats undesirable.)
Goal satisfaction
-----------------
1. Success
2. Success
3. Success
4. Success, though each change will need its parents looked up as well
so it will be proportional to the changes + the directories above
the changed path.
5. Success - looking at the difference against all parents we can determine
new keys without reference to the repository content will be inserted
into.
6. This probably needs a path->id map, allowing a 2-step lookup.
7. If we allocate buckets by hashing the id, then this is succeed, though,
as per 4 it will need recursive lookups.
8. Success
9. Fail - data beyond that currently included in testaments is included
in the strong validator.
Issues
------
1. Tuning the fragment size needs doing.
1. Testing.
1. Writing code.
1. Separate root node, or inline into revision?
1. Cannot do 'ls' efficiently in the current design.
1. Cannot detect invalid deltas easily.
1. What about LCA merge of inventories?
Canonical form
--------------
There are three fragment types for the canonical form. Each fragment is
addressed using a Content Hash Key (CHK) - for instance
"sha1:12345678901234567890".
root_node: (Perhaps this should be inlined into the revision object).
HASH_INVENTORY_SIGNATURE
path_map: CHK to root of path to id map
content_map: CHK to root of id to entry map
map_node: INTERNAL_NODE or LEAF_NODE
INTERNAL_NODE:
INTERNAL_NODE_SIGNATURE
hash_prefix: PREFIX
prefix_width: INT
PREFIX CHK TYPE SIZE
PREFIX CHK TYPE SIZE ...
(Where TYPE is I for internal or L for leaf).
leaf_node:
LEAF_NODE_SIGNATURE
hash_prefix: PREFIX
HASH\x00KEY\x00 VALUE
For path maps, VALUE is::
fileid
For content maps, VALUE::
fileid basename kind last-changed kind-specific-details
The path and content maps are populated simply by serialising every inventory
entry and inserting them into both the path map and the content map. The maps
start with just a single leaf node with an empty prefix.
Apply
-----
Given an inventory delta - a list of (old_path, new_path, InventoryEntry)
items, with a None in new_path indicating a delete operation, and recursive
deletes not being permitted - all entries to be deleted must be explicitly
listed, we can transform a current inventory directly. We can't trivially
detect an invalid delta though.
To perform an application, naively we can just update both maps. For the path
map we would remove all entries where the paths in the delta do not match, then
insert those with a new_path again. For the content map we would just remove
all the fileids in the delta, then insert those with a new_path that is not
None.
Delta
-----
To generate a delta between two inventories, we first generate a list of
altered fileids, and then recursively look up their parents to generate their
old and new file paths.
To generate the list of altered file ids, we do an entry by entry comparison of
the full contents of every leaf node that the two inventories do not have in
common. To do this, we start at the root node, and follow every CHK pointer
that is only in one tree. We can then bring in all the values from the leaf
nodes and do a set difference to get the altered ones, which we would then
parse.
Radix tree based inventories
============================
Overview
--------
We store two maps - fileid:path and path:inventory_entry. The fileid:path map
is a hash trie (as file ids have no useful locality of reference). The
path:inventory_entry map is stored as a regular trie. As for hash tries we
define a single canonical representation for regular tries similar to that
defined above for hash tries.
Goal satisfaction
-----------------
1. Success
2. Success
3. Success
4. Success
5. Success - looking at the difference against all parents we can determine
new keys without reference to the repository content will be inserted
into.
6. Success
7. Success
8. Success
9. Fail - data beyond that currently included in testaments is included
in the strong validator.
Issues
------
1. Tuning the fragment size needs doing.
1. Testing.
1. Writing code.
1. Separate root node, or inline into revision?
1. What about LCA merge of inventories?
Canonical form
--------------
There are five fragment types for the canonical form:
The root node, hash trie internal and leaf nodes as previous.
Then we have two more, the internal and leaf node for the radix tree.
radix_node: INTERNAL_NODE or LEAF_NODE
INTERNAL_NODE:
INTERNAL_NODE_SIGNATURE
prefix: PREFIX
suffix CHK TYPE SIZE
suffix CHK TYPE SIZE ...
(Where TYPE is I for internal or L for leaf).
LEAF_NODE:
LEAF_NODE_SIGNATURE
prefix: PREFIX
suffix\x00VALUE
For the content map we use the same value as for hashtrie inventories.
Node splitting and joining in the radix tree are managed in the same fashion as
as for the internal nodes of the hashtries.
Apply
-----
Apply is implemented as for hashtries - we just remove and reinsert the
fileid:paths map entries, and likewise for the path:entry map. We can however
cheaply detect invalid deltas where a delete fails to include its children.
Delta
-----
Delta generation is very similar to that with hash tries, except we get the
path of nodes as part of the lookup process.
Hash Trie details
=================
The canonical form for a hash trie is a tree of internal nodes leading down to
leaf nodes, with no node exceeding some threshold size, and every node
containing as much content as it can, but no leaf node containing less than
its lower size threshold. (In the event that an imbalance in the hash function
causes a tree where an internal node is needed, but any prefix generates a
child with less than the lower threshold, the smallest prefix should be taken).
An internal node holds some number of key prefixes, all with the same bit-width.
A leaf node holds the actual values. As trees do not spring fully-formed, the
canonical form is defined iteratively - by taking every item in a tree and
inserting it into a new tree in order you can determine what canonical form
would look like. As that is an expensive operation, it should only be done
rarely.
Updates to a tree that is in canonical form can be done preserving canonical
form if we can prove that our rules for insertion are order-independent,
and that our rules for deletion generate the same tree as if we never
inserted those nodes.
Our hash tries are balanced vertically but not horizontally. That is, one leg
of a tree can be arbitrarily deeper than adjacent legs. We require that each
node along a path within the tree be densely packed, with the densest nodes
near the top of the tree, and the least dense at the bottom. Except where the
tree cannot support it, no node is smaller than a minimum_size, and none
larger than maximum_size. The minimum size constraint is only applied when
there are enough entries under a prefix to meet that minimum. The maximum
size constraint is always applied except when a node with a single entry
is larger than the maximum size. Loosely, the maximum size constraint wins
over the minimum size constraint, and if the minimum size contraint is to
be ignored, a deeper prefix can be chosen to pack the containing node more
densely, as long as no additional minimum sizes checks on child nodes are
violated.
Insertion
---------
#. Hash the entry, and insert the entry in the leaf node with a matching
prefix, creating that node and linking it from the internal node containing
that prefix if there is no appropriate leaf node.
#. Starting at the highest node altered, for all altered nodes, check if it has
transitioned across either size boundary - 0 < min_size < max_size. If it
has not, proceed to update the CHK pointers.
#. If it increased above min_size, check the node above to see if it can be
more densely packed. To be below the min_size the node's parent must
have hit the max size constraint and been forced to split even though this
child did not have enough content to support a min_size node - so the prefix
chosen in the parent may be shorter than desirable and we may now be able
to more densely pack the parent by splitting the child nodes more. So if the
parent node can support a deeper prefix without hitting max_size, and the
count of under min_size nodes cannot be reduced, the parent should be given
a deeper prefix.
#. If it increased above max_size, shrink the prefix width used to split out
new nodes until the node is below max_size (unless the prefix width is
already 1 - the minimum).
To shrink the prefix of an internal node, create new internal nodes for each
new prefix, and populate them with the content of the nodes which were
formerly linked. (This will normally bubble down due to keeping densely
packed nodes).
To shrink the prefix of a leaf node, create an internal node with the same
prefix, then choose a width for the internal node such that the contents
of the leaf all fit into new leaves obeying the min_size and max_size rules.
The largest prefix possible should be chosen, to obey the
higher-nodes-are-denser rule. That rule also gives room in leaf nodes for
growth without affecting the parent node packing.
#. Update the CHK pointers - serialise every altered node to generate a CHK,
and update the CHK placeholder in the nodes parent; then reserialise the
parent. CHK pointer propagation can be done lazily when many updates are
expected.
Multiple versions of nodes for the same PREFIX and internal prefix width should
compress well for the same tree.
Inventory deltas
================
An inventory is a serialization of the in-memory inventory delta. To serialize
an inventory delta, one takes an existing inventory delta and the revision_id
of the revision it was created it against and the revision id of the inventory
which should result by applying the delta to the parent. We then serialize
every item in the delta in a simple format:
'format: bzr inventory delta v1 (1.14)' NL
'parent:' SP BASIS_INVENTORY NL
'version:' SP NULL_OR_REVISION NL
'versioned_root:' SP BOOL NL
'tree_references:' SP BOOL NL
DELTA_LINES
DELTA_LINES ::= (DELTA_LINE NL)*
DELTA_LINE ::= OLDPATH NULL NEWPATH NULL file-id NULL PARENT_ID NULL LAST_MODIFIED NULL CONTENT
SP ::= ' '
BOOL ::= 'true' | 'false'
NULL ::= \x00
OLDPATH ::= NONE | PATH
NEWPATH ::= NONE | PATH
NONE ::= 'None'
PATH ::= path
PARENT_ID ::= FILE_ID | ''
CONTENT ::= DELETED_CONTENT | FILE_CONTENT | DIR_CONTENT | TREE_CONTENT | LINK_CONTENT
DELETED_CONTENT ::= 'deleted'
FILE_CONTENT ::= 'file' NULL text_size NULL EXEC NULL text_sha1
DIR_CONTENT ::= 'dir'
TREE_CONTENT ::= 'tree' NULL tree-revision
LINK_CONTENT ::= 'link' NULL link-target
BASIS_INVENTORY ::= NULL_OR_REVISION
LAST_MODIFIED ::= NULL_OR_REVISION
NULL_OR_REVISION ::= 'null:' | REVISION
REVISION ::= revision-id-in-utf8-no-whitespace
EXEC ::= '' | 'Y'
DELTA_LINES is lexicographically sorted.
Some explanation is in order. When NEWPATH is 'None' a delete has been
recorded, and because this inventory delta is not attempting to be a reversible
delta, the only other valid fields are OLDPATH and 'file-id'. PARENT_ID is ''
when a delete has been recorded or when recording a new root entry.
Delta consistency
=================
Inventory deltas and more broadly changes between trees are a significant part
of bzr's core operations: they are key components in status, diff, commit,
and merge (although merge uses tree transform, deltas contain the changes that
are applied to the transform). Our ability to perform a given operation depends
on us creating consistent deltas between trees. Inconsistent deltas lead to
errors and bugs, or even just unexpected conflicts.
An inventory delta is a transform to change an inventory A into another
inventory B (in patch terms its a perfect patch). Sometimes, for instance in a
regular commit, inventory B is known at the time we create the delta. Other
times, B is not known because the user is requesting that some parts of the
second inventory they have are masked out from consideration. When this happens
we create a delta that when applied to A creates a B we haven't seen in total
before. In this situation we need to ensure that B will be internally
consistent. Deltas are unidirectional, a delta(A, B) creates B from A, but
cannot be used to create A from B.
Deltas are expressed as a list of (oldpath, newpath, fileid, entry) tuples. The
fileid, entry elements are normative; the old and new paths are strong hints
but not currently guaranteed to be accurate. (This is a shame and something we
should tighten up). Deltas are required to list all removals explicitly -
removing the parent of an entry doesn't remove the entry.
Applying a delta to an inventory consists of:
- removing all fileids for which entry is None
- adding or replacing all other fileids
- detecting consistency errors
An interesting aspect of delta inconsistencies is when we notice them:
- Silent errors which our application logic misses
- Visible errors we catch during application, so bad data isn't stored in
the system.
The minimum safe level for our application logic would be to catch all errors
during application. Making generation never generate inconsistent deltas is
a seperate but necessary condition for robust code.
An inconsistent delta is one which:
- after application to an inventory the inventory is an impossible state.
- has the same fileid, or oldpath(not-None), or newpath(not-None) multiple
times.
- has a fileid field different to the entry.fileid in the same item in the
delta.
- has an entry that is in an impossible state (e.g. a directory with a text
size)
Forms of inventory inconsistency deltas can carry/cause:
- An entry newly introduced to a path without also removing or relocating any
existing entry at that path. (Duplicate paths)
- An entry whose parent id isn't present in the tree. (Missing parent).
- Having oldpath or newpath not be actual original path or resulting path.
(Wrong path)
- An entry whose parent is not a directory. (Under non-directory).
- An entry that is internally inconsistent.
- An entry that is already present in the tree (Duplicate id)
Known causes of inconsistency:
- A 'new' entry which the inventory already has - when this is a directory
even arbitrary file ids under the 'new' entry are more likely to collide on
paths.
- Removing a directory without recursively removing its children - causes
Missing parent.
- Recording a change to an entry without including all changed entries found
following its parents up to and includin the root - can cause duplicate
paths, missing parents, wrong path, under non-directory.
Avoiding inconsistent deltas
----------------------------
The simplest thing is to never create partial deltas, as it is trivial to
be consistent when all data is examined every time. However users sometimes
want to specify a subset of the changes in their tree when they do an operation
which needs to create a delta - such as commit.
We have a choice about handling user requests that can generate inconsistent
deltas. We can alter or interpret the request in such a way that the delta will
be consistent, but perhaps larger than the user had intended. Or we can
identify problematic situations and abort, specifying to the user why we have
aborted and likely things they can do to make their request generate a
consistent delta.
Currently we attempt to expand/interpret the request so that the user is not
required to understand all the internal constraints of the system: if they
request 'foo/bar' we automatically include foo. This works but can surprise
the user sometimes when things they didn't explicitly request are committed.
Different trees can use different algorithms to expand the request as long as
they produce consistent deltas. As part of getting a consistent UI we require
that all trees expand the paths requested downwards. Beyond that as long as
the delta is consistent it is up to the tree.
Given two trees, source and target, and a set of selected file ids to check for
changes and if changed in a delta between them, we have to expand that set by
the following rules, to get consistent deltas. The test for consistency is that
if the resulting delta is applied to source, to create a third tree 'output',
and the paths in the delta match the paths in source and output, only one file
id is at each path in output, and no file ids are missing parents, then the
delta is consistent.
Firstly, the parent ids to the root for all of the file ids that have actually
changed must be considered. Unless they are all examined the paths in the delta
may be wrong.
Secondly, when an item included in the delta has a new path which is the same
as a path in source, the fileid of that path in source must be included.
Failing to do this leads to multiple ids tryin to share a path in output.
Thirdly, when an item changes its kind from 'directory' to anything else in the
delta, all of the direct children of the directory in source must be included.
|