1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
# Copyright (C) 2009 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
"""Implementation of Graph algorithms when we have already loaded everything.
"""
cdef extern from "python-compat.h":
pass
cdef extern from "Python.h":
ctypedef int Py_ssize_t
ctypedef struct PyObject:
pass
int PyString_CheckExact(object)
int PyObject_RichCompareBool(object, object, int)
int Py_LT
int PyTuple_CheckExact(object)
object PyTuple_New(Py_ssize_t n)
Py_ssize_t PyTuple_GET_SIZE(object t)
PyObject * PyTuple_GET_ITEM(object t, Py_ssize_t o)
void PyTuple_SET_ITEM(object t, Py_ssize_t o, object v)
int PyList_CheckExact(object)
Py_ssize_t PyList_GET_SIZE(object l)
PyObject * PyList_GET_ITEM(object l, Py_ssize_t o)
int PyList_SetItem(object l, Py_ssize_t o, object l) except -1
int PyList_Append(object l, object v) except -1
int PyDict_CheckExact(object d)
Py_ssize_t PyDict_Size(object d) except -1
PyObject * PyDict_GetItem(object d, object k)
int PyDict_SetItem(object d, object k, object v) except -1
int PyDict_DelItem(object d, object k) except -1
int PyDict_Next(object d, Py_ssize_t *pos, PyObject **k, PyObject **v)
void Py_INCREF(object)
import gc
from bzrlib import errors, revision
cdef object NULL_REVISION
NULL_REVISION = revision.NULL_REVISION
cdef class _KnownGraphNode:
"""Represents a single object in the known graph."""
cdef object key
cdef object parents
cdef object children
cdef public long gdfo
cdef int seen
cdef object extra
def __init__(self, key):
self.key = key
self.parents = None
self.children = []
# Greatest distance from origin
self.gdfo = -1
self.seen = 0
self.extra = None
property child_keys:
def __get__(self):
cdef _KnownGraphNode child
keys = []
for child in self.children:
PyList_Append(keys, child.key)
return keys
property parent_keys:
def __get__(self):
if self.parents is None:
return None
cdef _KnownGraphNode parent
keys = []
for parent in self.parents:
PyList_Append(keys, parent.key)
return keys
cdef clear_references(self):
self.parents = None
self.children = None
def __repr__(self):
cdef _KnownGraphNode node
parent_keys = []
if self.parents is not None:
for node in self.parents:
parent_keys.append(node.key)
child_keys = []
if self.children is not None:
for node in self.children:
child_keys.append(node.key)
return '%s(%s gdfo:%s par:%s child:%s)' % (
self.__class__.__name__, self.key, self.gdfo,
parent_keys, child_keys)
cdef _KnownGraphNode _get_list_node(lst, Py_ssize_t pos):
cdef PyObject *temp_node
temp_node = PyList_GET_ITEM(lst, pos)
return <_KnownGraphNode>temp_node
cdef _KnownGraphNode _get_tuple_node(tpl, Py_ssize_t pos):
cdef PyObject *temp_node
temp_node = PyTuple_GET_ITEM(tpl, pos)
return <_KnownGraphNode>temp_node
def get_key(node):
cdef _KnownGraphNode real_node
real_node = node
return real_node.key
cdef object _sort_list_nodes(object lst_or_tpl, int reverse):
"""Sort a list of _KnownGraphNode objects.
If lst_or_tpl is a list, it is allowed to mutate in place. It may also
just return the input list if everything is already sorted.
"""
cdef _KnownGraphNode node1, node2
cdef int do_swap, is_tuple
cdef Py_ssize_t length
is_tuple = PyTuple_CheckExact(lst_or_tpl)
if not (is_tuple or PyList_CheckExact(lst_or_tpl)):
raise TypeError('lst_or_tpl must be a list or tuple.')
length = len(lst_or_tpl)
if length == 0 or length == 1:
return lst_or_tpl
if length == 2:
if is_tuple:
node1 = _get_tuple_node(lst_or_tpl, 0)
node2 = _get_tuple_node(lst_or_tpl, 1)
else:
node1 = _get_list_node(lst_or_tpl, 0)
node2 = _get_list_node(lst_or_tpl, 1)
if reverse:
do_swap = PyObject_RichCompareBool(node1.key, node2.key, Py_LT)
else:
do_swap = PyObject_RichCompareBool(node2.key, node1.key, Py_LT)
if not do_swap:
return lst_or_tpl
if is_tuple:
return (node2, node1)
else:
# Swap 'in-place', since lists are mutable
Py_INCREF(node1)
PyList_SetItem(lst_or_tpl, 1, node1)
Py_INCREF(node2)
PyList_SetItem(lst_or_tpl, 0, node2)
return lst_or_tpl
# For all other sizes, we just use 'sorted()'
if is_tuple:
# Note that sorted() is just list(iterable).sort()
lst_or_tpl = list(lst_or_tpl)
lst_or_tpl.sort(key=get_key, reverse=reverse)
return lst_or_tpl
cdef class _MergeSorter
cdef class KnownGraph:
"""This is a class which assumes we already know the full graph."""
cdef public object _nodes
cdef object _known_heads
cdef public int do_cache
def __init__(self, parent_map, do_cache=True):
"""Create a new KnownGraph instance.
:param parent_map: A dictionary mapping key => parent_keys
"""
# tests at pre-allocating the node dict actually slowed things down
self._nodes = {}
# Maps {sorted(revision_id, revision_id): heads}
self._known_heads = {}
self.do_cache = int(do_cache)
# TODO: consider disabling gc since we are allocating a lot of nodes
# that won't be collectable anyway. real world testing has not
# shown a specific impact, yet.
self._initialize_nodes(parent_map)
self._find_gdfo()
def __dealloc__(self):
cdef _KnownGraphNode child
cdef Py_ssize_t pos
cdef PyObject *temp_node
while PyDict_Next(self._nodes, &pos, NULL, &temp_node):
child = <_KnownGraphNode>temp_node
child.clear_references()
cdef _KnownGraphNode _get_or_create_node(self, key):
cdef PyObject *temp_node
cdef _KnownGraphNode node
temp_node = PyDict_GetItem(self._nodes, key)
if temp_node == NULL:
node = _KnownGraphNode(key)
PyDict_SetItem(self._nodes, key, node)
else:
node = <_KnownGraphNode>temp_node
return node
def _initialize_nodes(self, parent_map):
"""Populate self._nodes.
After this has finished:
- self._nodes will have an entry for every entry in parent_map.
- ghosts will have a parent_keys = None,
- all nodes found will also have child_keys populated with all known
child keys,
"""
cdef PyObject *temp_key, *temp_parent_keys, *temp_node
cdef Py_ssize_t pos, pos2, num_parent_keys
cdef _KnownGraphNode node
cdef _KnownGraphNode parent_node
if not PyDict_CheckExact(parent_map):
raise TypeError('parent_map should be a dict of {key:parent_keys}')
# for key, parent_keys in parent_map.iteritems():
pos = 0
while PyDict_Next(parent_map, &pos, &temp_key, &temp_parent_keys):
key = <object>temp_key
parent_keys = <object>temp_parent_keys
num_parent_keys = len(parent_keys)
node = self._get_or_create_node(key)
# We know how many parents, so we pre allocate the tuple
parent_nodes = PyTuple_New(num_parent_keys)
for pos2 from 0 <= pos2 < num_parent_keys:
# Note: it costs us 10ms out of 40ms to lookup all of these
# parents, it doesn't seem to be an allocation overhead,
# but rather a lookup overhead. There doesn't seem to be
# a way around it, and that is one reason why
# KnownGraphNode maintains a direct pointer to the parent
# node.
# We use [] because parent_keys may be a tuple or list
parent_node = self._get_or_create_node(parent_keys[pos2])
# PyTuple_SET_ITEM will steal a reference, so INCREF first
Py_INCREF(parent_node)
PyTuple_SET_ITEM(parent_nodes, pos2, parent_node)
PyList_Append(parent_node.children, node)
node.parents = parent_nodes
def _find_tails(self):
cdef PyObject *temp_node
cdef _KnownGraphNode node
cdef Py_ssize_t pos
tails = []
pos = 0
while PyDict_Next(self._nodes, &pos, NULL, &temp_node):
node = <_KnownGraphNode>temp_node
if node.parents is None or PyTuple_GET_SIZE(node.parents) == 0:
node.gdfo = 1
PyList_Append(tails, node)
return tails
def _find_tips(self):
cdef PyObject *temp_node
cdef _KnownGraphNode node
cdef Py_ssize_t pos
tips = []
pos = 0
while PyDict_Next(self._nodes, &pos, NULL, &temp_node):
node = <_KnownGraphNode>temp_node
if PyList_GET_SIZE(node.children) == 0:
PyList_Append(tips, node)
return tips
def _find_gdfo(self):
cdef _KnownGraphNode node
cdef _KnownGraphNode child
cdef PyObject *temp
cdef Py_ssize_t pos
cdef int replace
cdef Py_ssize_t last_item
cdef long next_gdfo
pending = self._find_tails()
last_item = PyList_GET_SIZE(pending) - 1
while last_item >= 0:
# Avoid pop followed by push, instead, peek, and replace
# timing shows this is 930ms => 770ms for OOo
node = _get_list_node(pending, last_item)
last_item = last_item - 1
next_gdfo = node.gdfo + 1
for pos from 0 <= pos < PyList_GET_SIZE(node.children):
child = _get_list_node(node.children, pos)
if next_gdfo > child.gdfo:
child.gdfo = next_gdfo
child.seen = child.seen + 1
if child.seen == PyTuple_GET_SIZE(child.parents):
# This child is populated, queue it to be walked
last_item = last_item + 1
if last_item < PyList_GET_SIZE(pending):
Py_INCREF(child) # SetItem steals a ref
PyList_SetItem(pending, last_item, child)
else:
PyList_Append(pending, child)
# We have queued this node, we don't need to track it
# anymore
child.seen = 0
def heads(self, keys):
"""Return the heads from amongst keys.
This is done by searching the ancestries of each key. Any key that is
reachable from another key is not returned; all the others are.
This operation scales with the relative depth between any two keys. It
uses gdfo to avoid walking all ancestry.
:param keys: An iterable of keys.
:return: A set of the heads. Note that as a set there is no ordering
information. Callers will need to filter their input to create
order if they need it.
"""
cdef PyObject *maybe_node
cdef PyObject *maybe_heads
cdef PyObject *temp_node
cdef _KnownGraphNode node
cdef Py_ssize_t pos, last_item
cdef long min_gdfo
heads_key = frozenset(keys)
maybe_heads = PyDict_GetItem(self._known_heads, heads_key)
if maybe_heads != NULL:
return <object>maybe_heads
# Not cached, compute it ourselves
candidate_nodes = {}
for key in keys:
maybe_node = PyDict_GetItem(self._nodes, key)
if maybe_node == NULL:
raise KeyError('key %s not in nodes' % (key,))
PyDict_SetItem(candidate_nodes, key, <object>maybe_node)
maybe_node = PyDict_GetItem(candidate_nodes, NULL_REVISION)
if maybe_node != NULL:
# NULL_REVISION is only a head if it is the only entry
candidate_nodes.pop(NULL_REVISION)
if not candidate_nodes:
return frozenset([NULL_REVISION])
# The keys changed, so recalculate heads_key
heads_key = frozenset(candidate_nodes)
if PyDict_Size(candidate_nodes) < 2:
return heads_key
cleanup = []
pending = []
# we know a gdfo cannot be longer than a linear chain of all nodes
min_gdfo = PyDict_Size(self._nodes) + 1
# Build up nodes that need to be walked, note that starting nodes are
# not added to seen()
pos = 0
while PyDict_Next(candidate_nodes, &pos, NULL, &temp_node):
node = <_KnownGraphNode>temp_node
if node.parents is not None:
pending.extend(node.parents)
if node.gdfo < min_gdfo:
min_gdfo = node.gdfo
# Now do all the real work
last_item = PyList_GET_SIZE(pending) - 1
while last_item >= 0:
node = _get_list_node(pending, last_item)
last_item = last_item - 1
if node.seen:
# node already appears in some ancestry
continue
PyList_Append(cleanup, node)
node.seen = 1
if node.gdfo <= min_gdfo:
continue
if node.parents is not None and PyTuple_GET_SIZE(node.parents) > 0:
for pos from 0 <= pos < PyTuple_GET_SIZE(node.parents):
parent_node = _get_tuple_node(node.parents, pos)
last_item = last_item + 1
if last_item < PyList_GET_SIZE(pending):
Py_INCREF(parent_node) # SetItem steals a ref
PyList_SetItem(pending, last_item, parent_node)
else:
PyList_Append(pending, parent_node)
heads = []
pos = 0
while PyDict_Next(candidate_nodes, &pos, NULL, &temp_node):
node = <_KnownGraphNode>temp_node
if not node.seen:
PyList_Append(heads, node.key)
heads = frozenset(heads)
for pos from 0 <= pos < PyList_GET_SIZE(cleanup):
node = _get_list_node(cleanup, pos)
node.seen = 0
if self.do_cache:
PyDict_SetItem(self._known_heads, heads_key, heads)
return heads
def topo_sort(self):
"""Return the nodes in topological order.
All parents must occur before all children.
"""
# This is, for the most part, the same iteration order that we used for
# _find_gdfo, consider finding a way to remove the duplication
# In general, we find the 'tails' (nodes with no parents), and then
# walk to the children. For children that have all of their parents
# yielded, we queue up the child to be yielded as well.
cdef _KnownGraphNode node
cdef _KnownGraphNode child
cdef PyObject *temp
cdef Py_ssize_t pos
cdef int replace
cdef Py_ssize_t last_item
pending = self._find_tails()
if PyList_GET_SIZE(pending) == 0 and len(self._nodes) > 0:
raise errors.GraphCycleError(self._nodes)
topo_order = []
last_item = PyList_GET_SIZE(pending) - 1
while last_item >= 0:
# Avoid pop followed by push, instead, peek, and replace
# timing shows this is 930ms => 770ms for OOo
node = _get_list_node(pending, last_item)
last_item = last_item - 1
if node.parents is not None:
# We don't include ghost parents
PyList_Append(topo_order, node.key)
for pos from 0 <= pos < PyList_GET_SIZE(node.children):
child = _get_list_node(node.children, pos)
if child.gdfo == -1:
# We know we have a graph cycle because a node has a parent
# which we couldn't find
raise errors.GraphCycleError(self._nodes)
child.seen = child.seen + 1
if child.seen == PyTuple_GET_SIZE(child.parents):
# All parents of this child have been yielded, queue this
# one to be yielded as well
last_item = last_item + 1
if last_item < PyList_GET_SIZE(pending):
Py_INCREF(child) # SetItem steals a ref
PyList_SetItem(pending, last_item, child)
else:
PyList_Append(pending, child)
# We have queued this node, we don't need to track it
# anymore
child.seen = 0
# We started from the parents, so we don't need to do anymore work
return topo_order
def gc_sort(self):
"""Return a reverse topological ordering which is 'stable'.
There are a few constraints:
1) Reverse topological (all children before all parents)
2) Grouped by prefix
3) 'stable' sorting, so that we get the same result, independent of
machine, or extra data.
To do this, we use the same basic algorithm as topo_sort, but when we
aren't sure what node to access next, we sort them lexicographically.
"""
cdef PyObject *temp
cdef Py_ssize_t pos, last_item
cdef _KnownGraphNode node, node2, parent_node
tips = self._find_tips()
# Split the tips based on prefix
prefix_tips = {}
for pos from 0 <= pos < PyList_GET_SIZE(tips):
node = _get_list_node(tips, pos)
if PyString_CheckExact(node.key) or len(node.key) == 1:
prefix = ''
else:
prefix = node.key[0]
temp = PyDict_GetItem(prefix_tips, prefix)
if temp == NULL:
prefix_tips[prefix] = [node]
else:
tip_nodes = <object>temp
PyList_Append(tip_nodes, node)
result = []
for prefix in sorted(prefix_tips):
temp = PyDict_GetItem(prefix_tips, prefix)
assert temp != NULL
tip_nodes = <object>temp
pending = _sort_list_nodes(tip_nodes, 1)
last_item = PyList_GET_SIZE(pending) - 1
while last_item >= 0:
node = _get_list_node(pending, last_item)
last_item = last_item - 1
if node.parents is None:
# Ghost
continue
PyList_Append(result, node.key)
# Sorting the parent keys isn't strictly necessary for stable
# sorting of a given graph. But it does help minimize the
# differences between graphs
# For bzr.dev ancestry:
# 4.73ms no sort
# 7.73ms RichCompareBool sort
parents = _sort_list_nodes(node.parents, 1)
for pos from 0 <= pos < len(parents):
if PyTuple_CheckExact(parents):
parent_node = _get_tuple_node(parents, pos)
else:
parent_node = _get_list_node(parents, pos)
# TODO: GraphCycle detection
parent_node.seen = parent_node.seen + 1
if (parent_node.seen
== PyList_GET_SIZE(parent_node.children)):
# All children have been processed, queue up this
# parent
last_item = last_item + 1
if last_item < PyList_GET_SIZE(pending):
Py_INCREF(parent_node) # SetItem steals a ref
PyList_SetItem(pending, last_item, parent_node)
else:
PyList_Append(pending, parent_node)
parent_node.seen = 0
return result
def merge_sort(self, tip_key):
"""Compute the merge sorted graph output."""
cdef _MergeSorter sorter
# TODO: consider disabling gc since we are allocating a lot of nodes
# that won't be collectable anyway. real world testing has not
# shown a specific impact, yet.
sorter = _MergeSorter(self, tip_key)
return sorter.topo_order()
def get_parent_keys(self, key):
"""Get the parents for a key
Returns a list containg the parents keys. If the key is a ghost,
None is returned. A KeyError will be raised if the key is not in
the graph.
:param keys: Key to check (eg revision_id)
:return: A list of parents
"""
return self._nodes[key].parent_keys
def get_child_keys(self, key):
"""Get the children for a key
Returns a list containg the children keys. A KeyError will be raised
if the key is not in the graph.
:param keys: Key to check (eg revision_id)
:return: A list of children
"""
return self._nodes[key].child_keys
cdef class _MergeSortNode:
"""Tracks information about a node during the merge_sort operation."""
# Public api
cdef public object key
cdef public long merge_depth
cdef public object end_of_merge # True/False Is this the end of the current merge
# Private api, used while computing the information
cdef _KnownGraphNode left_parent
cdef _KnownGraphNode left_pending_parent
cdef object pending_parents # list of _KnownGraphNode for non-left parents
cdef long _revno_first
cdef long _revno_second
cdef long _revno_last
# TODO: turn these into flag/bit fields rather than individual members
cdef int is_first_child # Is this the first child?
cdef int seen_by_child # A child node has seen this parent
cdef int completed # Fully Processed
def __init__(self, key):
self.key = key
self.merge_depth = -1
self.left_parent = None
self.left_pending_parent = None
self.pending_parents = None
self._revno_first = -1
self._revno_second = -1
self._revno_last = -1
self.is_first_child = 0
self.seen_by_child = 0
self.completed = 0
def __repr__(self):
return '%s(%s depth:%s rev:%s,%s,%s first:%s seen:%s)' % (
self.__class__.__name__, self.key,
self.merge_depth,
self._revno_first, self._revno_second, self._revno_last,
self.is_first_child, self.seen_by_child)
cdef int has_pending_parents(self):
if self.left_pending_parent is not None or self.pending_parents:
return 1
return 0
cdef object _revno(self):
if self._revno_first == -1:
if self._revno_second != -1:
raise RuntimeError('Something wrong with: %s' % (self,))
return (self._revno_last,)
else:
return (self._revno_first, self._revno_second, self._revno_last)
property revno:
def __get__(self):
return self._revno()
cdef class _MergeSorter:
"""This class does the work of computing the merge_sort ordering.
We have some small advantages, in that we get all the extra information
that KnownGraph knows, like knowing the child lists, etc.
"""
# Current performance numbers for merge_sort(bzr_dev_parent_map):
# 302ms tsort.merge_sort()
# 91ms graph.KnownGraph().merge_sort()
# 40ms kg.merge_sort()
cdef KnownGraph graph
cdef object _depth_first_stack # list
cdef Py_ssize_t _last_stack_item # offset to last item on stack
# cdef object _ms_nodes # dict of key => _MergeSortNode
cdef object _revno_to_branch_count # {revno => num child branches}
cdef object _scheduled_nodes # List of nodes ready to be yielded
def __init__(self, known_graph, tip_key):
cdef _KnownGraphNode node
self.graph = known_graph
# self._ms_nodes = {}
self._revno_to_branch_count = {}
self._depth_first_stack = []
self._last_stack_item = -1
self._scheduled_nodes = []
if (tip_key is not None and tip_key != NULL_REVISION
and tip_key != (NULL_REVISION,)):
node = self.graph._nodes[tip_key]
self._push_node(node, 0)
cdef _MergeSortNode _get_ms_node(self, _KnownGraphNode node):
cdef PyObject *temp_node
cdef _MergeSortNode ms_node
if node.extra is None:
ms_node = _MergeSortNode(node.key)
node.extra = ms_node
else:
ms_node = <_MergeSortNode>node.extra
return ms_node
cdef _push_node(self, _KnownGraphNode node, long merge_depth):
cdef _KnownGraphNode parent_node
cdef _MergeSortNode ms_node, ms_parent_node
cdef Py_ssize_t pos
ms_node = self._get_ms_node(node)
ms_node.merge_depth = merge_depth
if node.parents is None:
raise RuntimeError('ghost nodes should not be pushed'
' onto the stack: %s' % (node,))
if PyTuple_GET_SIZE(node.parents) > 0:
parent_node = _get_tuple_node(node.parents, 0)
ms_node.left_parent = parent_node
if parent_node.parents is None: # left-hand ghost
ms_node.left_pending_parent = None
ms_node.left_parent = None
else:
ms_node.left_pending_parent = parent_node
if PyTuple_GET_SIZE(node.parents) > 1:
ms_node.pending_parents = []
for pos from 1 <= pos < PyTuple_GET_SIZE(node.parents):
parent_node = _get_tuple_node(node.parents, pos)
if parent_node.parents is None: # ghost
continue
PyList_Append(ms_node.pending_parents, parent_node)
ms_node.is_first_child = 1
if ms_node.left_parent is not None:
ms_parent_node = self._get_ms_node(ms_node.left_parent)
if ms_parent_node.seen_by_child:
ms_node.is_first_child = 0
ms_parent_node.seen_by_child = 1
self._last_stack_item = self._last_stack_item + 1
if self._last_stack_item < PyList_GET_SIZE(self._depth_first_stack):
Py_INCREF(node) # SetItem steals a ref
PyList_SetItem(self._depth_first_stack, self._last_stack_item,
node)
else:
PyList_Append(self._depth_first_stack, node)
cdef _pop_node(self):
cdef PyObject *temp
cdef _MergeSortNode ms_node, ms_parent_node, ms_prev_node
cdef _KnownGraphNode node, parent_node, prev_node
node = _get_list_node(self._depth_first_stack, self._last_stack_item)
ms_node = <_MergeSortNode>node.extra
self._last_stack_item = self._last_stack_item - 1
if ms_node.left_parent is not None:
# Assign the revision number from the left-hand parent
ms_parent_node = <_MergeSortNode>ms_node.left_parent.extra
if ms_node.is_first_child:
# First child just increments the final digit
ms_node._revno_first = ms_parent_node._revno_first
ms_node._revno_second = ms_parent_node._revno_second
ms_node._revno_last = ms_parent_node._revno_last + 1
else:
# Not the first child, make a new branch
# (mainline_revno, branch_count, 1)
if ms_parent_node._revno_first == -1:
# Mainline ancestor, the increment is on the last digit
base_revno = ms_parent_node._revno_last
else:
base_revno = ms_parent_node._revno_first
temp = PyDict_GetItem(self._revno_to_branch_count,
base_revno)
if temp == NULL:
branch_count = 1
else:
branch_count = (<object>temp) + 1
PyDict_SetItem(self._revno_to_branch_count, base_revno,
branch_count)
ms_node._revno_first = base_revno
ms_node._revno_second = branch_count
ms_node._revno_last = 1
else:
temp = PyDict_GetItem(self._revno_to_branch_count, 0)
if temp == NULL:
# The first root node doesn't have a 3-digit revno
root_count = 0
ms_node._revno_first = -1
ms_node._revno_second = -1
ms_node._revno_last = 1
else:
root_count = (<object>temp) + 1
ms_node._revno_first = 0
ms_node._revno_second = root_count
ms_node._revno_last = 1
PyDict_SetItem(self._revno_to_branch_count, 0, root_count)
ms_node.completed = 1
if PyList_GET_SIZE(self._scheduled_nodes) == 0:
# The first scheduled node is always the end of merge
ms_node.end_of_merge = True
else:
prev_node = _get_list_node(self._scheduled_nodes,
PyList_GET_SIZE(self._scheduled_nodes) - 1)
ms_prev_node = <_MergeSortNode>prev_node.extra
if ms_prev_node.merge_depth < ms_node.merge_depth:
# The previously pushed node is to our left, so this is the end
# of this right-hand chain
ms_node.end_of_merge = True
elif (ms_prev_node.merge_depth == ms_node.merge_depth
and prev_node not in node.parents):
# The next node is not a direct parent of this node
ms_node.end_of_merge = True
else:
ms_node.end_of_merge = False
PyList_Append(self._scheduled_nodes, node)
cdef _schedule_stack(self):
cdef _KnownGraphNode last_node, next_node
cdef _MergeSortNode ms_node, ms_last_node, ms_next_node
cdef long next_merge_depth
ordered = []
while self._last_stack_item >= 0:
# Peek at the last item on the stack
last_node = _get_list_node(self._depth_first_stack,
self._last_stack_item)
if last_node.gdfo == -1:
# if _find_gdfo skipped a node, that means there is a graph
# cycle, error out now
raise errors.GraphCycleError(self.graph._nodes)
ms_last_node = <_MergeSortNode>last_node.extra
if not ms_last_node.has_pending_parents():
# Processed all parents, pop this node
self._pop_node()
continue
while ms_last_node.has_pending_parents():
if ms_last_node.left_pending_parent is not None:
# recurse depth first into the primary parent
next_node = ms_last_node.left_pending_parent
ms_last_node.left_pending_parent = None
else:
# place any merges in right-to-left order for scheduling
# which gives us left-to-right order after we reverse
# the scheduled queue.
# Note: This has the effect of allocating common-new
# revisions to the right-most subtree rather than the
# left most, which will display nicely (you get
# smaller trees at the top of the combined merge).
next_node = ms_last_node.pending_parents.pop()
ms_next_node = self._get_ms_node(next_node)
if ms_next_node.completed:
# this parent was completed by a child on the
# call stack. skip it.
continue
# otherwise transfer it from the source graph into the
# top of the current depth first search stack.
if next_node is ms_last_node.left_parent:
next_merge_depth = ms_last_node.merge_depth
else:
next_merge_depth = ms_last_node.merge_depth + 1
self._push_node(next_node, next_merge_depth)
# and do not continue processing parents until this 'call'
# has recursed.
break
cdef topo_order(self):
cdef _MergeSortNode ms_node
cdef _KnownGraphNode node
cdef Py_ssize_t pos
cdef PyObject *temp_key, *temp_node
# Note: allocating a _MergeSortNode and deallocating it for all nodes
# costs approx 8.52ms (21%) of the total runtime
# We might consider moving the attributes into the base
# KnownGraph object.
self._schedule_stack()
# We've set up the basic schedule, now we can continue processing the
# output.
# Note: This final loop costs us 40.0ms => 28.8ms (11ms, 25%) on
# bzr.dev, to convert the internal Object representation into a
# Tuple representation...
# 2ms is walking the data and computing revno tuples
# 7ms is computing the return tuple
# 4ms is PyList_Append()
ordered = []
# output the result in reverse order, and separate the generated info
for pos from PyList_GET_SIZE(self._scheduled_nodes) > pos >= 0:
node = _get_list_node(self._scheduled_nodes, pos)
ms_node = <_MergeSortNode>node.extra
PyList_Append(ordered, ms_node)
node.extra = None
# Clear out the scheduled nodes now that we're done
self._scheduled_nodes = []
return ordered
|