1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
|
# Copyright (C) 2008, 2009 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
"""Persistent maps from tuple_of_strings->string using CHK stores.
Overview and current status:
The CHKMap class implements a dict from tuple_of_strings->string by using a trie
with internal nodes of 8-bit fan out; The key tuples are mapped to strings by
joining them by \x00, and \x00 padding shorter keys out to the length of the
longest key. Leaf nodes are packed as densely as possible, and internal nodes
are all an additional 8-bits wide leading to a sparse upper tree.
Updates to a CHKMap are done preferentially via the apply_delta method, to
allow optimisation of the update operation; but individual map/unmap calls are
possible and supported. All changes via map/unmap are buffered in memory until
the _save method is called to force serialisation of the tree. apply_delta
performs a _save implicitly.
TODO:
-----
Densely packed upper nodes.
"""
import heapq
import time
from bzrlib import lazy_import
lazy_import.lazy_import(globals(), """
from bzrlib import versionedfile
""")
from bzrlib import (
errors,
lru_cache,
osutils,
registry,
trace,
)
# approx 4MB
# If each line is 50 bytes, and you have 255 internal pages, with 255-way fan
# out, it takes 3.1MB to cache the layer.
_PAGE_CACHE_SIZE = 4*1024*1024
# We are caching bytes so len(value) is perfectly accurate
_page_cache = lru_cache.LRUSizeCache(_PAGE_CACHE_SIZE)
# If a ChildNode falls below this many bytes, we check for a remap
_INTERESTING_NEW_SIZE = 50
# If a ChildNode shrinks by more than this amount, we check for a remap
_INTERESTING_SHRINKAGE_LIMIT = 20
# If we delete more than this many nodes applying a delta, we check for a remap
_INTERESTING_DELETES_LIMIT = 5
def _search_key_plain(key):
"""Map the key tuple into a search string that just uses the key bytes."""
return '\x00'.join(key)
search_key_registry = registry.Registry()
search_key_registry.register('plain', _search_key_plain)
class CHKMap(object):
"""A persistent map from string to string backed by a CHK store."""
def __init__(self, store, root_key, search_key_func=None):
"""Create a CHKMap object.
:param store: The store the CHKMap is stored in.
:param root_key: The root key of the map. None to create an empty
CHKMap.
:param search_key_func: A function mapping a key => bytes. These bytes
are then used by the internal nodes to split up leaf nodes into
multiple pages.
"""
self._store = store
if search_key_func is None:
search_key_func = _search_key_plain
self._search_key_func = search_key_func
if root_key is None:
self._root_node = LeafNode(search_key_func=search_key_func)
else:
self._root_node = self._node_key(root_key)
def apply_delta(self, delta):
"""Apply a delta to the map.
:param delta: An iterable of old_key, new_key, new_value tuples.
If new_key is not None, then new_key->new_value is inserted
into the map; if old_key is not None, then the old mapping
of old_key is removed.
"""
delete_count = 0
for old, new, value in delta:
if old is not None and old != new:
self.unmap(old, check_remap=False)
delete_count += 1
for old, new, value in delta:
if new is not None:
self.map(new, value)
if delete_count > _INTERESTING_DELETES_LIMIT:
trace.mutter("checking remap as %d deletions", delete_count)
self._check_remap()
return self._save()
def _ensure_root(self):
"""Ensure that the root node is an object not a key."""
if type(self._root_node) is tuple:
# Demand-load the root
self._root_node = self._get_node(self._root_node)
def _get_node(self, node):
"""Get a node.
Note that this does not update the _items dict in objects containing a
reference to this node. As such it does not prevent subsequent IO being
performed.
:param node: A tuple key or node object.
:return: A node object.
"""
if type(node) is tuple:
bytes = self._read_bytes(node)
return _deserialise(bytes, node,
search_key_func=self._search_key_func)
else:
return node
def _read_bytes(self, key):
try:
return _page_cache[key]
except KeyError:
stream = self._store.get_record_stream([key], 'unordered', True)
bytes = stream.next().get_bytes_as('fulltext')
_page_cache[key] = bytes
return bytes
def _dump_tree(self, include_keys=False):
"""Return the tree in a string representation."""
self._ensure_root()
res = self._dump_tree_node(self._root_node, prefix='', indent='',
include_keys=include_keys)
res.append('') # Give a trailing '\n'
return '\n'.join(res)
def _dump_tree_node(self, node, prefix, indent, include_keys=True):
"""For this node and all children, generate a string representation."""
result = []
if not include_keys:
key_str = ''
else:
node_key = node.key()
if node_key is not None:
key_str = ' %s' % (node_key[0],)
else:
key_str = ' None'
result.append('%s%r %s%s' % (indent, prefix, node.__class__.__name__,
key_str))
if type(node) is InternalNode:
# Trigger all child nodes to get loaded
list(node._iter_nodes(self._store))
for prefix, sub in sorted(node._items.iteritems()):
result.extend(self._dump_tree_node(sub, prefix, indent + ' ',
include_keys=include_keys))
else:
for key, value in sorted(node._items.iteritems()):
# Don't use prefix nor indent here to line up when used in
# tests in conjunction with assertEqualDiff
result.append(' %r %r' % (key, value))
return result
@classmethod
def from_dict(klass, store, initial_value, maximum_size=0, key_width=1,
search_key_func=None):
"""Create a CHKMap in store with initial_value as the content.
:param store: The store to record initial_value in, a VersionedFiles
object with 1-tuple keys supporting CHK key generation.
:param initial_value: A dict to store in store. Its keys and values
must be bytestrings.
:param maximum_size: The maximum_size rule to apply to nodes. This
determines the size at which no new data is added to a single node.
:param key_width: The number of elements in each key_tuple being stored
in this map.
:param search_key_func: A function mapping a key => bytes. These bytes
are then used by the internal nodes to split up leaf nodes into
multiple pages.
:return: The root chk of the resulting CHKMap.
"""
root_key = klass._create_directly(store, initial_value,
maximum_size=maximum_size, key_width=key_width,
search_key_func=search_key_func)
return root_key
@classmethod
def _create_via_map(klass, store, initial_value, maximum_size=0,
key_width=1, search_key_func=None):
result = klass(store, None, search_key_func=search_key_func)
result._root_node.set_maximum_size(maximum_size)
result._root_node._key_width = key_width
delta = []
for key, value in initial_value.items():
delta.append((None, key, value))
root_key = result.apply_delta(delta)
return root_key
@classmethod
def _create_directly(klass, store, initial_value, maximum_size=0,
key_width=1, search_key_func=None):
node = LeafNode(search_key_func=search_key_func)
node.set_maximum_size(maximum_size)
node._key_width = key_width
node._items = dict(initial_value)
node._raw_size = sum([node._key_value_len(key, value)
for key,value in initial_value.iteritems()])
node._len = len(node._items)
node._compute_search_prefix()
node._compute_serialised_prefix()
if (node._len > 1
and maximum_size
and node._current_size() > maximum_size):
prefix, node_details = node._split(store)
if len(node_details) == 1:
raise AssertionError('Failed to split using node._split')
node = InternalNode(prefix, search_key_func=search_key_func)
node.set_maximum_size(maximum_size)
node._key_width = key_width
for split, subnode in node_details:
node.add_node(split, subnode)
keys = list(node.serialise(store))
return keys[-1]
def iter_changes(self, basis):
"""Iterate over the changes between basis and self.
:return: An iterator of tuples: (key, old_value, new_value). Old_value
is None for keys only in self; new_value is None for keys only in
basis.
"""
# Overview:
# Read both trees in lexographic, highest-first order.
# Any identical nodes we skip
# Any unique prefixes we output immediately.
# values in a leaf node are treated as single-value nodes in the tree
# which allows them to be not-special-cased. We know to output them
# because their value is a string, not a key(tuple) or node.
#
# corner cases to beware of when considering this function:
# *) common references are at different heights.
# consider two trees:
# {'a': LeafNode={'aaa':'foo', 'aab':'bar'}, 'b': LeafNode={'b'}}
# {'a': InternalNode={'aa':LeafNode={'aaa':'foo', 'aab':'bar'},
# 'ab':LeafNode={'ab':'bar'}}
# 'b': LeafNode={'b'}}
# the node with aaa/aab will only be encountered in the second tree
# after reading the 'a' subtree, but it is encountered in the first
# tree immediately. Variations on this may have read internal nodes
# like this. we want to cut the entire pending subtree when we
# realise we have a common node. For this we use a list of keys -
# the path to a node - and check the entire path is clean as we
# process each item.
if self._node_key(self._root_node) == self._node_key(basis._root_node):
return
self._ensure_root()
basis._ensure_root()
excluded_keys = set()
self_node = self._root_node
basis_node = basis._root_node
# A heap, each element is prefix, node(tuple/NodeObject/string),
# key_path (a list of tuples, tail-sharing down the tree.)
self_pending = []
basis_pending = []
def process_node(node, path, a_map, pending):
# take a node and expand it
node = a_map._get_node(node)
if type(node) == LeafNode:
path = (node._key, path)
for key, value in node._items.items():
# For a LeafNode, the key is a serialized_key, rather than
# a search_key, but the heap is using search_keys
search_key = node._search_key_func(key)
heapq.heappush(pending, (search_key, key, value, path))
else:
# type(node) == InternalNode
path = (node._key, path)
for prefix, child in node._items.items():
heapq.heappush(pending, (prefix, None, child, path))
def process_common_internal_nodes(self_node, basis_node):
self_items = set(self_node._items.items())
basis_items = set(basis_node._items.items())
path = (self_node._key, None)
for prefix, child in self_items - basis_items:
heapq.heappush(self_pending, (prefix, None, child, path))
path = (basis_node._key, None)
for prefix, child in basis_items - self_items:
heapq.heappush(basis_pending, (prefix, None, child, path))
def process_common_leaf_nodes(self_node, basis_node):
self_items = set(self_node._items.items())
basis_items = set(basis_node._items.items())
path = (self_node._key, None)
for key, value in self_items - basis_items:
prefix = self._search_key_func(key)
heapq.heappush(self_pending, (prefix, key, value, path))
path = (basis_node._key, None)
for key, value in basis_items - self_items:
prefix = basis._search_key_func(key)
heapq.heappush(basis_pending, (prefix, key, value, path))
def process_common_prefix_nodes(self_node, self_path,
basis_node, basis_path):
# Would it be more efficient if we could request both at the same
# time?
self_node = self._get_node(self_node)
basis_node = basis._get_node(basis_node)
if (type(self_node) == InternalNode
and type(basis_node) == InternalNode):
# Matching internal nodes
process_common_internal_nodes(self_node, basis_node)
elif (type(self_node) == LeafNode
and type(basis_node) == LeafNode):
process_common_leaf_nodes(self_node, basis_node)
else:
process_node(self_node, self_path, self, self_pending)
process_node(basis_node, basis_path, basis, basis_pending)
process_common_prefix_nodes(self_node, None, basis_node, None)
self_seen = set()
basis_seen = set()
excluded_keys = set()
def check_excluded(key_path):
# Note that this is N^2, it depends on us trimming trees
# aggressively to not become slow.
# A better implementation would probably have a reverse map
# back to the children of a node, and jump straight to it when
# a common node is detected, the proceed to remove the already
# pending children. bzrlib.graph has a searcher module with a
# similar problem.
while key_path is not None:
key, key_path = key_path
if key in excluded_keys:
return True
return False
loop_counter = 0
while self_pending or basis_pending:
loop_counter += 1
if not self_pending:
# self is exhausted: output remainder of basis
for prefix, key, node, path in basis_pending:
if check_excluded(path):
continue
node = basis._get_node(node)
if key is not None:
# a value
yield (key, node, None)
else:
# subtree - fastpath the entire thing.
for key, value in node.iteritems(basis._store):
yield (key, value, None)
return
elif not basis_pending:
# basis is exhausted: output remainder of self.
for prefix, key, node, path in self_pending:
if check_excluded(path):
continue
node = self._get_node(node)
if key is not None:
# a value
yield (key, None, node)
else:
# subtree - fastpath the entire thing.
for key, value in node.iteritems(self._store):
yield (key, None, value)
return
else:
# XXX: future optimisation - yield the smaller items
# immediately rather than pushing everything on/off the
# heaps. Applies to both internal nodes and leafnodes.
if self_pending[0][0] < basis_pending[0][0]:
# expand self
prefix, key, node, path = heapq.heappop(self_pending)
if check_excluded(path):
continue
if key is not None:
# a value
yield (key, None, node)
else:
process_node(node, path, self, self_pending)
continue
elif self_pending[0][0] > basis_pending[0][0]:
# expand basis
prefix, key, node, path = heapq.heappop(basis_pending)
if check_excluded(path):
continue
if key is not None:
# a value
yield (key, node, None)
else:
process_node(node, path, basis, basis_pending)
continue
else:
# common prefix: possibly expand both
if self_pending[0][1] is None:
# process next self
read_self = True
else:
read_self = False
if basis_pending[0][1] is None:
# process next basis
read_basis = True
else:
read_basis = False
if not read_self and not read_basis:
# compare a common value
self_details = heapq.heappop(self_pending)
basis_details = heapq.heappop(basis_pending)
if self_details[2] != basis_details[2]:
yield (self_details[1],
basis_details[2], self_details[2])
continue
# At least one side wasn't a simple value
if (self._node_key(self_pending[0][2]) ==
self._node_key(basis_pending[0][2])):
# Identical pointers, skip (and don't bother adding to
# excluded, it won't turn up again.
heapq.heappop(self_pending)
heapq.heappop(basis_pending)
continue
# Now we need to expand this node before we can continue
if read_self and read_basis:
# Both sides start with the same prefix, so process
# them in parallel
self_prefix, _, self_node, self_path = heapq.heappop(
self_pending)
basis_prefix, _, basis_node, basis_path = heapq.heappop(
basis_pending)
if self_prefix != basis_prefix:
raise AssertionError(
'%r != %r' % (self_prefix, basis_prefix))
process_common_prefix_nodes(
self_node, self_path,
basis_node, basis_path)
continue
if read_self:
prefix, key, node, path = heapq.heappop(self_pending)
if check_excluded(path):
continue
process_node(node, path, self, self_pending)
if read_basis:
prefix, key, node, path = heapq.heappop(basis_pending)
if check_excluded(path):
continue
process_node(node, path, basis, basis_pending)
# print loop_counter
def iteritems(self, key_filter=None):
"""Iterate over the entire CHKMap's contents."""
self._ensure_root()
return self._root_node.iteritems(self._store, key_filter=key_filter)
def key(self):
"""Return the key for this map."""
if type(self._root_node) is tuple:
return self._root_node
else:
return self._root_node._key
def __len__(self):
self._ensure_root()
return len(self._root_node)
def map(self, key, value):
"""Map a key tuple to value."""
# Need a root object.
self._ensure_root()
prefix, node_details = self._root_node.map(self._store, key, value)
if len(node_details) == 1:
self._root_node = node_details[0][1]
else:
self._root_node = InternalNode(prefix,
search_key_func=self._search_key_func)
self._root_node.set_maximum_size(node_details[0][1].maximum_size)
self._root_node._key_width = node_details[0][1]._key_width
for split, node in node_details:
self._root_node.add_node(split, node)
def _node_key(self, node):
"""Get the key for a node whether it's a tuple or node."""
if type(node) is tuple:
return node
else:
return node._key
def unmap(self, key, check_remap=True):
"""remove key from the map."""
self._ensure_root()
if type(self._root_node) is InternalNode:
unmapped = self._root_node.unmap(self._store, key,
check_remap=check_remap)
else:
unmapped = self._root_node.unmap(self._store, key)
self._root_node = unmapped
def _check_remap(self):
"""Check if nodes can be collapsed."""
self._ensure_root()
if type(self._root_node) is InternalNode:
self._root_node._check_remap(self._store)
def _save(self):
"""Save the map completely.
:return: The key of the root node.
"""
if type(self._root_node) is tuple:
# Already saved.
return self._root_node
keys = list(self._root_node.serialise(self._store))
return keys[-1]
class Node(object):
"""Base class defining the protocol for CHK Map nodes.
:ivar _raw_size: The total size of the serialized key:value data, before
adding the header bytes, and without prefix compression.
"""
def __init__(self, key_width=1):
"""Create a node.
:param key_width: The width of keys for this node.
"""
self._key = None
# Current number of elements
self._len = 0
self._maximum_size = 0
self._key_width = key_width
# current size in bytes
self._raw_size = 0
# The pointers/values this node has - meaning defined by child classes.
self._items = {}
# The common search prefix
self._search_prefix = None
def __repr__(self):
items_str = str(sorted(self._items))
if len(items_str) > 20:
items_str = items_str[:16] + '...]'
return '%s(key:%s len:%s size:%s max:%s prefix:%s items:%s)' % (
self.__class__.__name__, self._key, self._len, self._raw_size,
self._maximum_size, self._search_prefix, items_str)
def key(self):
return self._key
def __len__(self):
return self._len
@property
def maximum_size(self):
"""What is the upper limit for adding references to a node."""
return self._maximum_size
def set_maximum_size(self, new_size):
"""Set the size threshold for nodes.
:param new_size: The size at which no data is added to a node. 0 for
unlimited.
"""
self._maximum_size = new_size
@classmethod
def common_prefix(cls, prefix, key):
"""Given 2 strings, return the longest prefix common to both.
:param prefix: This has been the common prefix for other keys, so it is
more likely to be the common prefix in this case as well.
:param key: Another string to compare to
"""
if key.startswith(prefix):
return prefix
pos = -1
# Is there a better way to do this?
for pos, (left, right) in enumerate(zip(prefix, key)):
if left != right:
pos -= 1
break
common = prefix[:pos+1]
return common
@classmethod
def common_prefix_for_keys(cls, keys):
"""Given a list of keys, find their common prefix.
:param keys: An iterable of strings.
:return: The longest common prefix of all keys.
"""
common_prefix = None
for key in keys:
if common_prefix is None:
common_prefix = key
continue
common_prefix = cls.common_prefix(common_prefix, key)
if not common_prefix:
# if common_prefix is the empty string, then we know it won't
# change further
return ''
return common_prefix
# Singleton indicating we have not computed _search_prefix yet
_unknown = object()
class LeafNode(Node):
"""A node containing actual key:value pairs.
:ivar _items: A dict of key->value items. The key is in tuple form.
:ivar _size: The number of bytes that would be used by serializing all of
the key/value pairs.
"""
def __init__(self, search_key_func=None):
Node.__init__(self)
# All of the keys in this leaf node share this common prefix
self._common_serialised_prefix = None
self._serialise_key = '\x00'.join
if search_key_func is None:
self._search_key_func = _search_key_plain
else:
self._search_key_func = search_key_func
def __repr__(self):
items_str = str(sorted(self._items))
if len(items_str) > 20:
items_str = items_str[:16] + '...]'
return \
'%s(key:%s len:%s size:%s max:%s prefix:%s keywidth:%s items:%s)' \
% (self.__class__.__name__, self._key, self._len, self._raw_size,
self._maximum_size, self._search_prefix, self._key_width, items_str)
def _current_size(self):
"""Answer the current serialised size of this node.
This differs from self._raw_size in that it includes the bytes used for
the header.
"""
if self._common_serialised_prefix is None:
bytes_for_items = 0
prefix_len = 0
else:
# We will store a single string with the common prefix
# And then that common prefix will not be stored in any of the
# entry lines
prefix_len = len(self._common_serialised_prefix)
bytes_for_items = (self._raw_size - (prefix_len * self._len))
return (9 # 'chkleaf:\n'
+ len(str(self._maximum_size)) + 1
+ len(str(self._key_width)) + 1
+ len(str(self._len)) + 1
+ prefix_len + 1
+ bytes_for_items)
@classmethod
def deserialise(klass, bytes, key, search_key_func=None):
"""Deserialise bytes, with key key, into a LeafNode.
:param bytes: The bytes of the node.
:param key: The key that the serialised node has.
"""
return _deserialise_leaf_node(bytes, key,
search_key_func=search_key_func)
def iteritems(self, store, key_filter=None):
"""Iterate over items in the node.
:param key_filter: A filter to apply to the node. It should be a
list/set/dict or similar repeatedly iterable container.
"""
if key_filter is not None:
# Adjust the filter - short elements go to a prefix filter. All
# other items are looked up directly.
# XXX: perhaps defaultdict? Profiling<rinse and repeat>
filters = {}
for key in key_filter:
if len(key) == self._key_width:
# This filter is meant to match exactly one key, yield it
# if we have it.
try:
yield key, self._items[key]
except KeyError:
# This key is not present in this map, continue
pass
else:
# Short items, we need to match based on a prefix
length_filter = filters.setdefault(len(key), set())
length_filter.add(key)
if filters:
filters = filters.items()
for item in self._items.iteritems():
for length, length_filter in filters:
if item[0][:length] in length_filter:
yield item
break
else:
for item in self._items.iteritems():
yield item
def _key_value_len(self, key, value):
# TODO: Should probably be done without actually joining the key, but
# then that can be done via the C extension
return (len(self._serialise_key(key)) + 1
+ len(str(value.count('\n'))) + 1
+ len(value) + 1)
def _search_key(self, key):
return self._search_key_func(key)
def _map_no_split(self, key, value):
"""Map a key to a value.
This assumes either the key does not already exist, or you have already
removed its size and length from self.
:return: True if adding this node should cause us to split.
"""
self._items[key] = value
self._raw_size += self._key_value_len(key, value)
self._len += 1
serialised_key = self._serialise_key(key)
if self._common_serialised_prefix is None:
self._common_serialised_prefix = serialised_key
else:
self._common_serialised_prefix = self.common_prefix(
self._common_serialised_prefix, serialised_key)
search_key = self._search_key(key)
if self._search_prefix is _unknown:
self._compute_search_prefix()
if self._search_prefix is None:
self._search_prefix = search_key
else:
self._search_prefix = self.common_prefix(
self._search_prefix, search_key)
if (self._len > 1
and self._maximum_size
and self._current_size() > self._maximum_size):
# Check to see if all of the search_keys for this node are
# identical. We allow the node to grow under that circumstance
# (we could track this as common state, but it is infrequent)
if (search_key != self._search_prefix
or not self._are_search_keys_identical()):
return True
return False
def _split(self, store):
"""We have overflowed.
Split this node into multiple LeafNodes, return it up the stack so that
the next layer creates a new InternalNode and references the new nodes.
:return: (common_serialised_prefix, [(node_serialised_prefix, node)])
"""
if self._search_prefix is _unknown:
raise AssertionError('Search prefix must be known')
common_prefix = self._search_prefix
split_at = len(common_prefix) + 1
result = {}
for key, value in self._items.iteritems():
search_key = self._search_key(key)
prefix = search_key[:split_at]
# TODO: Generally only 1 key can be exactly the right length,
# which means we can only have 1 key in the node pointed
# at by the 'prefix\0' key. We might want to consider
# folding it into the containing InternalNode rather than
# having a fixed length-1 node.
# Note this is probably not true for hash keys, as they
# may get a '\00' node anywhere, but won't have keys of
# different lengths.
if len(prefix) < split_at:
prefix += '\x00'*(split_at - len(prefix))
if prefix not in result:
node = LeafNode(search_key_func=self._search_key_func)
node.set_maximum_size(self._maximum_size)
node._key_width = self._key_width
result[prefix] = node
else:
node = result[prefix]
sub_prefix, node_details = node.map(store, key, value)
if len(node_details) > 1:
if prefix != sub_prefix:
# This node has been split and is now found via a different
# path
result.pop(prefix)
new_node = InternalNode(sub_prefix,
search_key_func=self._search_key_func)
new_node.set_maximum_size(self._maximum_size)
new_node._key_width = self._key_width
for split, node in node_details:
new_node.add_node(split, node)
result[prefix] = new_node
return common_prefix, result.items()
def map(self, store, key, value):
"""Map key to value."""
if key in self._items:
self._raw_size -= self._key_value_len(key, self._items[key])
self._len -= 1
self._key = None
if self._map_no_split(key, value):
return self._split(store)
else:
if self._search_prefix is _unknown:
raise AssertionError('%r must be known' % self._search_prefix)
return self._search_prefix, [("", self)]
def serialise(self, store):
"""Serialise the LeafNode to store.
:param store: A VersionedFiles honouring the CHK extensions.
:return: An iterable of the keys inserted by this operation.
"""
lines = ["chkleaf:\n"]
lines.append("%d\n" % self._maximum_size)
lines.append("%d\n" % self._key_width)
lines.append("%d\n" % self._len)
if self._common_serialised_prefix is None:
lines.append('\n')
if len(self._items) != 0:
raise AssertionError('If _common_serialised_prefix is None'
' we should have no items')
else:
lines.append('%s\n' % (self._common_serialised_prefix,))
prefix_len = len(self._common_serialised_prefix)
for key, value in sorted(self._items.items()):
# Always add a final newline
value_lines = osutils.chunks_to_lines([value + '\n'])
serialized = "%s\x00%s\n" % (self._serialise_key(key),
len(value_lines))
if not serialized.startswith(self._common_serialised_prefix):
raise AssertionError('We thought the common prefix was %r'
' but entry %r does not have it in common'
% (self._common_serialised_prefix, serialized))
lines.append(serialized[prefix_len:])
lines.extend(value_lines)
sha1, _, _ = store.add_lines((None,), (), lines)
self._key = ("sha1:" + sha1,)
bytes = ''.join(lines)
if len(bytes) != self._current_size():
raise AssertionError('Invalid _current_size')
_page_cache.add(self._key, bytes)
return [self._key]
def refs(self):
"""Return the references to other CHK's held by this node."""
return []
def _compute_search_prefix(self):
"""Determine the common search prefix for all keys in this node.
:return: A bytestring of the longest search key prefix that is
unique within this node.
"""
search_keys = [self._search_key_func(key) for key in self._items]
self._search_prefix = self.common_prefix_for_keys(search_keys)
return self._search_prefix
def _are_search_keys_identical(self):
"""Check to see if the search keys for all entries are the same.
When using a hash as the search_key it is possible for non-identical
keys to collide. If that happens enough, we may try overflow a
LeafNode, but as all are collisions, we must not split.
"""
common_search_key = None
for key in self._items:
search_key = self._search_key(key)
if common_search_key is None:
common_search_key = search_key
elif search_key != common_search_key:
return False
return True
def _compute_serialised_prefix(self):
"""Determine the common prefix for serialised keys in this node.
:return: A bytestring of the longest serialised key prefix that is
unique within this node.
"""
serialised_keys = [self._serialise_key(key) for key in self._items]
self._common_serialised_prefix = self.common_prefix_for_keys(
serialised_keys)
return self._common_serialised_prefix
def unmap(self, store, key):
"""Unmap key from the node."""
try:
self._raw_size -= self._key_value_len(key, self._items[key])
except KeyError:
trace.mutter("key %s not found in %r", key, self._items)
raise
self._len -= 1
del self._items[key]
self._key = None
# Recompute from scratch
self._compute_search_prefix()
self._compute_serialised_prefix()
return self
class InternalNode(Node):
"""A node that contains references to other nodes.
An InternalNode is responsible for mapping search key prefixes to child
nodes.
:ivar _items: serialised_key => node dictionary. node may be a tuple,
LeafNode or InternalNode.
"""
def __init__(self, prefix='', search_key_func=None):
Node.__init__(self)
# The size of an internalnode with default values and no children.
# How many octets key prefixes within this node are.
self._node_width = 0
self._search_prefix = prefix
if search_key_func is None:
self._search_key_func = _search_key_plain
else:
self._search_key_func = search_key_func
def add_node(self, prefix, node):
"""Add a child node with prefix prefix, and node node.
:param prefix: The search key prefix for node.
:param node: The node being added.
"""
if self._search_prefix is None:
raise AssertionError("_search_prefix should not be None")
if not prefix.startswith(self._search_prefix):
raise AssertionError("prefixes mismatch: %s must start with %s"
% (prefix,self._search_prefix))
if len(prefix) != len(self._search_prefix) + 1:
raise AssertionError("prefix wrong length: len(%s) is not %d" %
(prefix, len(self._search_prefix) + 1))
self._len += len(node)
if not len(self._items):
self._node_width = len(prefix)
if self._node_width != len(self._search_prefix) + 1:
raise AssertionError("node width mismatch: %d is not %d" %
(self._node_width, len(self._search_prefix) + 1))
self._items[prefix] = node
self._key = None
def _current_size(self):
"""Answer the current serialised size of this node."""
return (self._raw_size + len(str(self._len)) + len(str(self._key_width)) +
len(str(self._maximum_size)))
@classmethod
def deserialise(klass, bytes, key, search_key_func=None):
"""Deserialise bytes to an InternalNode, with key key.
:param bytes: The bytes of the node.
:param key: The key that the serialised node has.
:return: An InternalNode instance.
"""
return _deserialise_internal_node(bytes, key,
search_key_func=search_key_func)
def iteritems(self, store, key_filter=None):
for node, node_filter in self._iter_nodes(store, key_filter=key_filter):
for item in node.iteritems(store, key_filter=node_filter):
yield item
def _iter_nodes(self, store, key_filter=None, batch_size=None):
"""Iterate over node objects which match key_filter.
:param store: A store to use for accessing content.
:param key_filter: A key filter to filter nodes. Only nodes that might
contain a key in key_filter will be returned.
:param batch_size: If not None, then we will return the nodes that had
to be read using get_record_stream in batches, rather than reading
them all at once.
:return: An iterable of nodes. This function does not have to be fully
consumed. (There will be no pending I/O when items are being returned.)
"""
# Map from chk key ('sha1:...',) to (prefix, key_filter)
# prefix is the key in self._items to use, key_filter is the key_filter
# entries that would match this node
keys = {}
shortcut = False
if key_filter is None:
# yielding all nodes, yield whatever we have, and queue up a read
# for whatever we are missing
shortcut = True
for prefix, node in self._items.iteritems():
if node.__class__ is tuple:
keys[node] = (prefix, None)
else:
yield node, None
elif len(key_filter) == 1:
# Technically, this path could also be handled by the first check
# in 'self._node_width' in length_filters. However, we can handle
# this case without spending any time building up the
# prefix_to_keys, etc state.
# This is a bit ugly, but TIMEIT showed it to be by far the fastest
# 0.626us list(key_filter)[0]
# is a func() for list(), 2 mallocs, and a getitem
# 0.489us [k for k in key_filter][0]
# still has the mallocs, avoids the func() call
# 0.350us iter(key_filter).next()
# has a func() call, and mallocs an iterator
# 0.125us for key in key_filter: pass
# no func() overhead, might malloc an iterator
# 0.105us for key in key_filter: break
# no func() overhead, might malloc an iterator, probably
# avoids checking an 'else' clause as part of the for
for key in key_filter:
break
search_prefix = self._search_prefix_filter(key)
if len(search_prefix) == self._node_width:
# This item will match exactly, so just do a dict lookup, and
# see what we can return
shortcut = True
try:
node = self._items[search_prefix]
except KeyError:
# A given key can only match 1 child node, if it isn't
# there, then we can just return nothing
return
if node.__class__ is tuple:
keys[node] = (search_prefix, [key])
else:
# This is loaded, and the only thing that can match,
# return
yield node, [key]
return
if not shortcut:
# First, convert all keys into a list of search prefixes
# Aggregate common prefixes, and track the keys they come from
prefix_to_keys = {}
length_filters = {}
for key in key_filter:
search_prefix = self._search_prefix_filter(key)
length_filter = length_filters.setdefault(
len(search_prefix), set())
length_filter.add(search_prefix)
prefix_to_keys.setdefault(search_prefix, []).append(key)
if (self._node_width in length_filters
and len(length_filters) == 1):
# all of the search prefixes match exactly _node_width. This
# means that everything is an exact match, and we can do a
# lookup into self._items, rather than iterating over the items
# dict.
search_prefixes = length_filters[self._node_width]
for search_prefix in search_prefixes:
try:
node = self._items[search_prefix]
except KeyError:
# We can ignore this one
continue
node_key_filter = prefix_to_keys[search_prefix]
if node.__class__ is tuple:
keys[node] = (search_prefix, node_key_filter)
else:
yield node, node_key_filter
else:
# The slow way. We walk every item in self._items, and check to
# see if there are any matches
length_filters = length_filters.items()
for prefix, node in self._items.iteritems():
node_key_filter = []
for length, length_filter in length_filters:
sub_prefix = prefix[:length]
if sub_prefix in length_filter:
node_key_filter.extend(prefix_to_keys[sub_prefix])
if node_key_filter: # this key matched something, yield it
if node.__class__ is tuple:
keys[node] = (prefix, node_key_filter)
else:
yield node, node_key_filter
if keys:
# Look in the page cache for some more bytes
found_keys = set()
for key in keys:
try:
bytes = _page_cache[key]
except KeyError:
continue
else:
node = _deserialise(bytes, key,
search_key_func=self._search_key_func)
prefix, node_key_filter = keys[key]
self._items[prefix] = node
found_keys.add(key)
yield node, node_key_filter
for key in found_keys:
del keys[key]
if keys:
# demand load some pages.
if batch_size is None:
# Read all the keys in
batch_size = len(keys)
key_order = list(keys)
for batch_start in range(0, len(key_order), batch_size):
batch = key_order[batch_start:batch_start + batch_size]
# We have to fully consume the stream so there is no pending
# I/O, so we buffer the nodes for now.
stream = store.get_record_stream(batch, 'unordered', True)
node_and_filters = []
for record in stream:
bytes = record.get_bytes_as('fulltext')
node = _deserialise(bytes, record.key,
search_key_func=self._search_key_func)
prefix, node_key_filter = keys[record.key]
node_and_filters.append((node, node_key_filter))
self._items[prefix] = node
_page_cache.add(record.key, bytes)
for info in node_and_filters:
yield info
def map(self, store, key, value):
"""Map key to value."""
if not len(self._items):
raise AssertionError("can't map in an empty InternalNode.")
search_key = self._search_key(key)
if self._node_width != len(self._search_prefix) + 1:
raise AssertionError("node width mismatch: %d is not %d" %
(self._node_width, len(self._search_prefix) + 1))
if not search_key.startswith(self._search_prefix):
# This key doesn't fit in this index, so we need to split at the
# point where it would fit, insert self into that internal node,
# and then map this key into that node.
new_prefix = self.common_prefix(self._search_prefix,
search_key)
new_parent = InternalNode(new_prefix,
search_key_func=self._search_key_func)
new_parent.set_maximum_size(self._maximum_size)
new_parent._key_width = self._key_width
new_parent.add_node(self._search_prefix[:len(new_prefix)+1],
self)
return new_parent.map(store, key, value)
children = [node for node, _
in self._iter_nodes(store, key_filter=[key])]
if children:
child = children[0]
else:
# new child needed:
child = self._new_child(search_key, LeafNode)
old_len = len(child)
if type(child) is LeafNode:
old_size = child._current_size()
else:
old_size = None
prefix, node_details = child.map(store, key, value)
if len(node_details) == 1:
# child may have shrunk, or might be a new node
child = node_details[0][1]
self._len = self._len - old_len + len(child)
self._items[search_key] = child
self._key = None
new_node = self
if type(child) is LeafNode:
if old_size is None:
# The old node was an InternalNode which means it has now
# collapsed, so we need to check if it will chain to a
# collapse at this level.
trace.mutter("checking remap as InternalNode -> LeafNode")
new_node = self._check_remap(store)
else:
# If the LeafNode has shrunk in size, we may want to run
# a remap check. Checking for a remap is expensive though
# and the frequency of a successful remap is very low.
# Shrinkage by small amounts is common, so we only do the
# remap check if the new_size is low or the shrinkage
# amount is over a configurable limit.
new_size = child._current_size()
shrinkage = old_size - new_size
if (shrinkage > 0 and new_size < _INTERESTING_NEW_SIZE
or shrinkage > _INTERESTING_SHRINKAGE_LIMIT):
trace.mutter(
"checking remap as size shrunk by %d to be %d",
shrinkage, new_size)
new_node = self._check_remap(store)
if new_node._search_prefix is None:
raise AssertionError("_search_prefix should not be None")
return new_node._search_prefix, [('', new_node)]
# child has overflown - create a new intermediate node.
# XXX: This is where we might want to try and expand our depth
# to refer to more bytes of every child (which would give us
# multiple pointers to child nodes, but less intermediate nodes)
child = self._new_child(search_key, InternalNode)
child._search_prefix = prefix
for split, node in node_details:
child.add_node(split, node)
self._len = self._len - old_len + len(child)
self._key = None
return self._search_prefix, [("", self)]
def _new_child(self, search_key, klass):
"""Create a new child node of type klass."""
child = klass()
child.set_maximum_size(self._maximum_size)
child._key_width = self._key_width
child._search_key_func = self._search_key_func
self._items[search_key] = child
return child
def serialise(self, store):
"""Serialise the node to store.
:param store: A VersionedFiles honouring the CHK extensions.
:return: An iterable of the keys inserted by this operation.
"""
for node in self._items.itervalues():
if type(node) is tuple:
# Never deserialised.
continue
if node._key is not None:
# Never altered
continue
for key in node.serialise(store):
yield key
lines = ["chknode:\n"]
lines.append("%d\n" % self._maximum_size)
lines.append("%d\n" % self._key_width)
lines.append("%d\n" % self._len)
if self._search_prefix is None:
raise AssertionError("_search_prefix should not be None")
lines.append('%s\n' % (self._search_prefix,))
prefix_len = len(self._search_prefix)
for prefix, node in sorted(self._items.items()):
if type(node) is tuple:
key = node[0]
else:
key = node._key[0]
serialised = "%s\x00%s\n" % (prefix, key)
if not serialised.startswith(self._search_prefix):
raise AssertionError("prefixes mismatch: %s must start with %s"
% (serialised, self._search_prefix))
lines.append(serialised[prefix_len:])
sha1, _, _ = store.add_lines((None,), (), lines)
self._key = ("sha1:" + sha1,)
_page_cache.add(self._key, ''.join(lines))
yield self._key
def _search_key(self, key):
"""Return the serialised key for key in this node."""
# search keys are fixed width. All will be self._node_width wide, so we
# pad as necessary.
return (self._search_key_func(key) + '\x00'*self._node_width)[:self._node_width]
def _search_prefix_filter(self, key):
"""Serialise key for use as a prefix filter in iteritems."""
return self._search_key_func(key)[:self._node_width]
def _split(self, offset):
"""Split this node into smaller nodes starting at offset.
:param offset: The offset to start the new child nodes at.
:return: An iterable of (prefix, node) tuples. prefix is a byte
prefix for reaching node.
"""
if offset >= self._node_width:
for node in self._items.values():
for result in node._split(offset):
yield result
return
for key, node in self._items.items():
pass
def refs(self):
"""Return the references to other CHK's held by this node."""
if self._key is None:
raise AssertionError("unserialised nodes have no refs.")
refs = []
for value in self._items.itervalues():
if type(value) is tuple:
refs.append(value)
else:
refs.append(value.key())
return refs
def _compute_search_prefix(self, extra_key=None):
"""Return the unique key prefix for this node.
:return: A bytestring of the longest search key prefix that is
unique within this node.
"""
self._search_prefix = self.common_prefix_for_keys(self._items)
return self._search_prefix
def unmap(self, store, key, check_remap=True):
"""Remove key from this node and it's children."""
if not len(self._items):
raise AssertionError("can't unmap in an empty InternalNode.")
children = [node for node, _
in self._iter_nodes(store, key_filter=[key])]
if children:
child = children[0]
else:
raise KeyError(key)
self._len -= 1
unmapped = child.unmap(store, key)
self._key = None
search_key = self._search_key(key)
if len(unmapped) == 0:
# All child nodes are gone, remove the child:
del self._items[search_key]
unmapped = None
else:
# Stash the returned node
self._items[search_key] = unmapped
if len(self._items) == 1:
# this node is no longer needed:
return self._items.values()[0]
if type(unmapped) is InternalNode:
return self
if check_remap:
return self._check_remap(store)
else:
return self
def _check_remap(self, store):
"""Check if all keys contained by children fit in a single LeafNode.
:param store: A store to use for reading more nodes
:return: Either self, or a new LeafNode which should replace self.
"""
# Logic for how we determine when we need to rebuild
# 1) Implicitly unmap() is removing a key which means that the child
# nodes are going to be shrinking by some extent.
# 2) If all children are LeafNodes, it is possible that they could be
# combined into a single LeafNode, which can then completely replace
# this internal node with a single LeafNode
# 3) If *one* child is an InternalNode, we assume it has already done
# all the work to determine that its children cannot collapse, and
# we can then assume that those nodes *plus* the current nodes don't
# have a chance of collapsing either.
# So a very cheap check is to just say if 'unmapped' is an
# InternalNode, we don't have to check further.
# TODO: Another alternative is to check the total size of all known
# LeafNodes. If there is some formula we can use to determine the
# final size without actually having to read in any more
# children, it would be nice to have. However, we have to be
# careful with stuff like nodes that pull out the common prefix
# of each key, as adding a new key can change the common prefix
# and cause size changes greater than the length of one key.
# So for now, we just add everything to a new Leaf until it
# splits, as we know that will give the right answer
new_leaf = LeafNode(search_key_func=self._search_key_func)
new_leaf.set_maximum_size(self._maximum_size)
new_leaf._key_width = self._key_width
# A batch_size of 16 was chosen because:
# a) In testing, a 4k page held 14 times. So if we have more than 16
# leaf nodes we are unlikely to hold them in a single new leaf
# node. This still allows for 1 round trip
# b) With 16-way fan out, we can still do a single round trip
# c) With 255-way fan out, we don't want to read all 255 and destroy
# the page cache, just to determine that we really don't need it.
for node, _ in self._iter_nodes(store, batch_size=16):
if type(node) is InternalNode:
# Without looking at any leaf nodes, we are sure
return self
for key, value in node._items.iteritems():
if new_leaf._map_no_split(key, value):
return self
trace.mutter("remap generated a new LeafNode")
return new_leaf
def _deserialise(bytes, key, search_key_func):
"""Helper for repositorydetails - convert bytes to a node."""
if bytes.startswith("chkleaf:\n"):
node = LeafNode.deserialise(bytes, key, search_key_func=search_key_func)
elif bytes.startswith("chknode:\n"):
node = InternalNode.deserialise(bytes, key,
search_key_func=search_key_func)
else:
raise AssertionError("Unknown node type.")
return node
def _find_children_info(store, interesting_keys, uninteresting_keys, pb):
"""Read the associated records, and determine what is interesting."""
uninteresting_keys = set(uninteresting_keys)
chks_to_read = uninteresting_keys.union(interesting_keys)
next_uninteresting = set()
next_interesting = set()
next_interesting_intersection = None
uninteresting_items = set()
interesting_items = set()
interesting_to_yield = []
for record in store.get_record_stream(chks_to_read, 'unordered', True):
# records_read.add(record.key())
if pb is not None:
pb.tick()
bytes = record.get_bytes_as('fulltext')
# We don't care about search_key_func for this code, because we only
# care about external references.
node = _deserialise(bytes, record.key, search_key_func=None)
if record.key in uninteresting_keys:
if type(node) is InternalNode:
next_uninteresting.update(node.refs())
else:
# We know we are at a LeafNode, so we can pass None for the
# store
uninteresting_items.update(node.iteritems(None))
else:
interesting_to_yield.append(record.key)
if type(node) is InternalNode:
if next_interesting_intersection is None:
next_interesting_intersection = set(node.refs())
else:
next_interesting_intersection = \
next_interesting_intersection.intersection(node.refs())
next_interesting.update(node.refs())
else:
interesting_items.update(node.iteritems(None))
return (next_uninteresting, uninteresting_items,
next_interesting, interesting_to_yield, interesting_items,
next_interesting_intersection)
def _find_all_uninteresting(store, interesting_root_keys,
uninteresting_root_keys, pb):
"""Determine the full set of uninteresting keys."""
# What about duplicates between interesting_root_keys and
# uninteresting_root_keys?
if not uninteresting_root_keys:
# Shortcut case. We know there is nothing uninteresting to filter out
# So we just let the rest of the algorithm do the work
# We know there is nothing uninteresting, and we didn't have to read
# any interesting records yet.
return (set(), set(), set(interesting_root_keys), [], set())
all_uninteresting_chks = set(uninteresting_root_keys)
all_uninteresting_items = set()
# First step, find the direct children of both the interesting and
# uninteresting set
(uninteresting_keys, uninteresting_items,
interesting_keys, interesting_to_yield,
interesting_items, interesting_intersection,
) = _find_children_info(store, interesting_root_keys,
uninteresting_root_keys,
pb=pb)
all_uninteresting_chks.update(uninteresting_keys)
all_uninteresting_items.update(uninteresting_items)
del uninteresting_items
# Do not examine in detail pages common to all interesting trees.
# Pages that are common to all interesting trees will have their
# older versions found via the uninteresting tree traversal. Some pages
# found via the interesting trees traversal will be uninteresting for
# other of the interesting trees, which is why we require the pages to be
# common for us to trim them.
if interesting_intersection is not None:
uninteresting_keys.difference_update(interesting_intersection)
# Second, find the full set of uninteresting bits reachable by the
# uninteresting roots
chks_to_read = uninteresting_keys
while chks_to_read:
next_chks = set()
for record in store.get_record_stream(chks_to_read, 'unordered', False):
# TODO: Handle 'absent'
if pb is not None:
pb.tick()
bytes = record.get_bytes_as('fulltext')
# We don't care about search_key_func for this code, because we
# only care about external references.
node = _deserialise(bytes, record.key, search_key_func=None)
if type(node) is InternalNode:
# uninteresting_prefix_chks.update(node._items.iteritems())
chks = node._items.values()
# TODO: We remove the entries that are already in
# uninteresting_chks ?
next_chks.update(chks)
all_uninteresting_chks.update(chks)
else:
all_uninteresting_items.update(node._items.iteritems())
chks_to_read = next_chks
return (all_uninteresting_chks, all_uninteresting_items,
interesting_keys, interesting_to_yield, interesting_items)
def iter_interesting_nodes(store, interesting_root_keys,
uninteresting_root_keys, pb=None):
"""Given root keys, find interesting nodes.
Evaluate nodes referenced by interesting_root_keys. Ones that are also
referenced from uninteresting_root_keys are not considered interesting.
:param interesting_root_keys: keys which should be part of the
"interesting" nodes (which will be yielded)
:param uninteresting_root_keys: keys which should be filtered out of the
result set.
:return: Yield
(interesting record, {interesting key:values})
"""
# TODO: consider that it may be more memory efficient to use the 20-byte
# sha1 string, rather than tuples of hexidecimal sha1 strings.
# TODO: Try to factor out a lot of the get_record_stream() calls into a
# helper function similar to _read_bytes. This function should be
# able to use nodes from the _page_cache as well as actually
# requesting bytes from the store.
(all_uninteresting_chks, all_uninteresting_items, interesting_keys,
interesting_to_yield, interesting_items) = _find_all_uninteresting(store,
interesting_root_keys, uninteresting_root_keys, pb)
# Now that we know everything uninteresting, we can yield information from
# our first request
interesting_items.difference_update(all_uninteresting_items)
interesting_to_yield = set(interesting_to_yield) - all_uninteresting_chks
if interesting_items:
yield None, interesting_items
if interesting_to_yield:
# We request these records again, rather than buffering the root
# records, most likely they are still in the _group_cache anyway.
for record in store.get_record_stream(interesting_to_yield,
'unordered', False):
yield record, []
all_uninteresting_chks.update(interesting_to_yield)
interesting_keys.difference_update(all_uninteresting_chks)
chks_to_read = interesting_keys
counter = 0
while chks_to_read:
next_chks = set()
for record in store.get_record_stream(chks_to_read, 'unordered', False):
counter += 1
if pb is not None:
pb.update('find chk pages', counter)
# TODO: Handle 'absent'?
bytes = record.get_bytes_as('fulltext')
# We don't care about search_key_func for this code, because we
# only care about external references.
node = _deserialise(bytes, record.key, search_key_func=None)
if type(node) is InternalNode:
# all_uninteresting_chks grows large, as it lists all nodes we
# don't want to process (including already seen interesting
# nodes).
# small.difference_update(large) scales O(large), but
# small.difference(large) scales O(small).
# Also, we know we just _deserialised this node, so we can
# access the dict directly.
chks = set(node._items.itervalues()).difference(
all_uninteresting_chks)
# Is set() and .difference_update better than:
# chks = [chk for chk in node.refs()
# if chk not in all_uninteresting_chks]
next_chks.update(chks)
# These are now uninteresting everywhere else
all_uninteresting_chks.update(chks)
interesting_items = []
else:
interesting_items = [item for item in node._items.iteritems()
if item not in all_uninteresting_items]
# TODO: Do we need to filter out items that we have already
# seen on other pages? We don't really want to buffer the
# whole thing, but it does mean that callers need to
# understand they may get duplicate values.
# all_uninteresting_items.update(interesting_items)
yield record, interesting_items
chks_to_read = next_chks
try:
from bzrlib._chk_map_pyx import (
_search_key_16,
_search_key_255,
_deserialise_leaf_node,
_deserialise_internal_node,
)
except ImportError:
from bzrlib._chk_map_py import (
_search_key_16,
_search_key_255,
_deserialise_leaf_node,
_deserialise_internal_node,
)
search_key_registry.register('hash-16-way', _search_key_16)
search_key_registry.register('hash-255-way', _search_key_255)
|