1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
|
# Copyright (C) 2007 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
import time
from bzrlib import (
debug,
errors,
revision,
symbol_versioning,
trace,
tsort,
)
STEP_UNIQUE_SEARCHER_EVERY = 5
# DIAGRAM of terminology
# A
# /\
# B C
# | |\
# D E F
# |\/| |
# |/\|/
# G H
#
# In this diagram, relative to G and H:
# A, B, C, D, E are common ancestors.
# C, D and E are border ancestors, because each has a non-common descendant.
# D and E are least common ancestors because none of their descendants are
# common ancestors.
# C is not a least common ancestor because its descendant, E, is a common
# ancestor.
#
# The find_unique_lca algorithm will pick A in two steps:
# 1. find_lca('G', 'H') => ['D', 'E']
# 2. Since len(['D', 'E']) > 1, find_lca('D', 'E') => ['A']
class DictParentsProvider(object):
"""A parents provider for Graph objects."""
def __init__(self, ancestry):
self.ancestry = ancestry
def __repr__(self):
return 'DictParentsProvider(%r)' % self.ancestry
def get_parent_map(self, keys):
"""See _StackedParentsProvider.get_parent_map"""
ancestry = self.ancestry
return dict((k, ancestry[k]) for k in keys if k in ancestry)
class _StackedParentsProvider(object):
def __init__(self, parent_providers):
self._parent_providers = parent_providers
def __repr__(self):
return "_StackedParentsProvider(%r)" % self._parent_providers
def get_parent_map(self, keys):
"""Get a mapping of keys => parents
A dictionary is returned with an entry for each key present in this
source. If this source doesn't have information about a key, it should
not include an entry.
[NULL_REVISION] is used as the parent of the first user-committed
revision. Its parent list is empty.
:param keys: An iterable returning keys to check (eg revision_ids)
:return: A dictionary mapping each key to its parents
"""
found = {}
remaining = set(keys)
for parents_provider in self._parent_providers:
new_found = parents_provider.get_parent_map(remaining)
found.update(new_found)
remaining.difference_update(new_found)
if not remaining:
break
return found
class CachingParentsProvider(object):
"""A parents provider which will cache the revision => parents as a dict.
This is useful for providers which have an expensive look up.
Either a ParentsProvider or a get_parent_map-like callback may be
supplied. If it provides extra un-asked-for parents, they will be cached,
but filtered out of get_parent_map.
The cache is enabled by default, but may be disabled and re-enabled.
"""
def __init__(self, parent_provider=None, get_parent_map=None):
"""Constructor.
:param parent_provider: The ParentProvider to use. It or
get_parent_map must be supplied.
:param get_parent_map: The get_parent_map callback to use. It or
parent_provider must be supplied.
"""
self._real_provider = parent_provider
if get_parent_map is None:
self._get_parent_map = self._real_provider.get_parent_map
else:
self._get_parent_map = get_parent_map
self._cache = None
self.enable_cache(True)
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._real_provider)
def enable_cache(self, cache_misses=True):
"""Enable cache."""
if self._cache is not None:
raise AssertionError('Cache enabled when already enabled.')
self._cache = {}
self._cache_misses = cache_misses
self.missing_keys = set()
def disable_cache(self):
"""Disable and clear the cache."""
self._cache = None
self._cache_misses = None
self.missing_keys = set()
def get_cached_map(self):
"""Return any cached get_parent_map values."""
if self._cache is None:
return None
return dict(self._cache)
def get_parent_map(self, keys):
"""See _StackedParentsProvider.get_parent_map."""
cache = self._cache
if cache is None:
cache = self._get_parent_map(keys)
else:
needed_revisions = set(key for key in keys if key not in cache)
# Do not ask for negatively cached keys
needed_revisions.difference_update(self.missing_keys)
if needed_revisions:
parent_map = self._get_parent_map(needed_revisions)
cache.update(parent_map)
if self._cache_misses:
for key in needed_revisions:
if key not in parent_map:
self.note_missing_key(key)
result = {}
for key in keys:
value = cache.get(key)
if value is not None:
result[key] = value
return result
def note_missing_key(self, key):
"""Note that key is a missing key."""
if self._cache_misses:
self.missing_keys.add(key)
class Graph(object):
"""Provide incremental access to revision graphs.
This is the generic implementation; it is intended to be subclassed to
specialize it for other repository types.
"""
def __init__(self, parents_provider):
"""Construct a Graph that uses several graphs as its input
This should not normally be invoked directly, because there may be
specialized implementations for particular repository types. See
Repository.get_graph().
:param parents_provider: An object providing a get_parent_map call
conforming to the behavior of
StackedParentsProvider.get_parent_map.
"""
if getattr(parents_provider, 'get_parents', None) is not None:
self.get_parents = parents_provider.get_parents
if getattr(parents_provider, 'get_parent_map', None) is not None:
self.get_parent_map = parents_provider.get_parent_map
self._parents_provider = parents_provider
def __repr__(self):
return 'Graph(%r)' % self._parents_provider
def find_lca(self, *revisions):
"""Determine the lowest common ancestors of the provided revisions
A lowest common ancestor is a common ancestor none of whose
descendants are common ancestors. In graphs, unlike trees, there may
be multiple lowest common ancestors.
This algorithm has two phases. Phase 1 identifies border ancestors,
and phase 2 filters border ancestors to determine lowest common
ancestors.
In phase 1, border ancestors are identified, using a breadth-first
search starting at the bottom of the graph. Searches are stopped
whenever a node or one of its descendants is determined to be common
In phase 2, the border ancestors are filtered to find the least
common ancestors. This is done by searching the ancestries of each
border ancestor.
Phase 2 is perfomed on the principle that a border ancestor that is
not an ancestor of any other border ancestor is a least common
ancestor.
Searches are stopped when they find a node that is determined to be a
common ancestor of all border ancestors, because this shows that it
cannot be a descendant of any border ancestor.
The scaling of this operation should be proportional to
1. The number of uncommon ancestors
2. The number of border ancestors
3. The length of the shortest path between a border ancestor and an
ancestor of all border ancestors.
"""
border_common, common, sides = self._find_border_ancestors(revisions)
# We may have common ancestors that can be reached from each other.
# - ask for the heads of them to filter it down to only ones that
# cannot be reached from each other - phase 2.
return self.heads(border_common)
def find_difference(self, left_revision, right_revision):
"""Determine the graph difference between two revisions"""
border, common, searchers = self._find_border_ancestors(
[left_revision, right_revision])
self._search_for_extra_common(common, searchers)
left = searchers[0].seen
right = searchers[1].seen
return (left.difference(right), right.difference(left))
def find_distance_to_null(self, target_revision_id, known_revision_ids):
"""Find the left-hand distance to the NULL_REVISION.
(This can also be considered the revno of a branch at
target_revision_id.)
:param target_revision_id: A revision_id which we would like to know
the revno for.
:param known_revision_ids: [(revision_id, revno)] A list of known
revno, revision_id tuples. We'll use this to seed the search.
"""
# Map from revision_ids to a known value for their revno
known_revnos = dict(known_revision_ids)
cur_tip = target_revision_id
num_steps = 0
NULL_REVISION = revision.NULL_REVISION
known_revnos[NULL_REVISION] = 0
searching_known_tips = list(known_revnos.keys())
unknown_searched = {}
while cur_tip not in known_revnos:
unknown_searched[cur_tip] = num_steps
num_steps += 1
to_search = set([cur_tip])
to_search.update(searching_known_tips)
parent_map = self.get_parent_map(to_search)
parents = parent_map.get(cur_tip, None)
if not parents: # An empty list or None is a ghost
raise errors.GhostRevisionsHaveNoRevno(target_revision_id,
cur_tip)
cur_tip = parents[0]
next_known_tips = []
for revision_id in searching_known_tips:
parents = parent_map.get(revision_id, None)
if not parents:
continue
next = parents[0]
next_revno = known_revnos[revision_id] - 1
if next in unknown_searched:
# We have enough information to return a value right now
return next_revno + unknown_searched[next]
if next in known_revnos:
continue
known_revnos[next] = next_revno
next_known_tips.append(next)
searching_known_tips = next_known_tips
# We reached a known revision, so just add in how many steps it took to
# get there.
return known_revnos[cur_tip] + num_steps
def find_unique_ancestors(self, unique_revision, common_revisions):
"""Find the unique ancestors for a revision versus others.
This returns the ancestry of unique_revision, excluding all revisions
in the ancestry of common_revisions. If unique_revision is in the
ancestry, then the empty set will be returned.
:param unique_revision: The revision_id whose ancestry we are
interested in.
XXX: Would this API be better if we allowed multiple revisions on
to be searched here?
:param common_revisions: Revision_ids of ancestries to exclude.
:return: A set of revisions in the ancestry of unique_revision
"""
if unique_revision in common_revisions:
return set()
# Algorithm description
# 1) Walk backwards from the unique node and all common nodes.
# 2) When a node is seen by both sides, stop searching it in the unique
# walker, include it in the common walker.
# 3) Stop searching when there are no nodes left for the unique walker.
# At this point, you have a maximal set of unique nodes. Some of
# them may actually be common, and you haven't reached them yet.
# 4) Start new searchers for the unique nodes, seeded with the
# information you have so far.
# 5) Continue searching, stopping the common searches when the search
# tip is an ancestor of all unique nodes.
# 6) Aggregate together unique searchers when they are searching the
# same tips. When all unique searchers are searching the same node,
# stop move it to a single 'all_unique_searcher'.
# 7) The 'all_unique_searcher' represents the very 'tip' of searching.
# Most of the time this produces very little important information.
# So don't step it as quickly as the other searchers.
# 8) Search is done when all common searchers have completed.
unique_searcher, common_searcher = self._find_initial_unique_nodes(
[unique_revision], common_revisions)
unique_nodes = unique_searcher.seen.difference(common_searcher.seen)
if not unique_nodes:
return unique_nodes
(all_unique_searcher,
unique_tip_searchers) = self._make_unique_searchers(unique_nodes,
unique_searcher, common_searcher)
self._refine_unique_nodes(unique_searcher, all_unique_searcher,
unique_tip_searchers, common_searcher)
true_unique_nodes = unique_nodes.difference(common_searcher.seen)
if 'graph' in debug.debug_flags:
trace.mutter('Found %d truly unique nodes out of %d',
len(true_unique_nodes), len(unique_nodes))
return true_unique_nodes
def _find_initial_unique_nodes(self, unique_revisions, common_revisions):
"""Steps 1-3 of find_unique_ancestors.
Find the maximal set of unique nodes. Some of these might actually
still be common, but we are sure that there are no other unique nodes.
:return: (unique_searcher, common_searcher)
"""
unique_searcher = self._make_breadth_first_searcher(unique_revisions)
# we know that unique_revisions aren't in common_revisions, so skip
# past them.
unique_searcher.next()
common_searcher = self._make_breadth_first_searcher(common_revisions)
# As long as we are still finding unique nodes, keep searching
while unique_searcher._next_query:
next_unique_nodes = set(unique_searcher.step())
next_common_nodes = set(common_searcher.step())
# Check if either searcher encounters new nodes seen by the other
# side.
unique_are_common_nodes = next_unique_nodes.intersection(
common_searcher.seen)
unique_are_common_nodes.update(
next_common_nodes.intersection(unique_searcher.seen))
if unique_are_common_nodes:
ancestors = unique_searcher.find_seen_ancestors(
unique_are_common_nodes)
# TODO: This is a bit overboard, we only really care about
# the ancestors of the tips because the rest we
# already know. This is *correct* but causes us to
# search too much ancestry.
ancestors.update(common_searcher.find_seen_ancestors(ancestors))
unique_searcher.stop_searching_any(ancestors)
common_searcher.start_searching(ancestors)
return unique_searcher, common_searcher
def _make_unique_searchers(self, unique_nodes, unique_searcher,
common_searcher):
"""Create a searcher for all the unique search tips (step 4).
As a side effect, the common_searcher will stop searching any nodes
that are ancestors of the unique searcher tips.
:return: (all_unique_searcher, unique_tip_searchers)
"""
unique_tips = self._remove_simple_descendants(unique_nodes,
self.get_parent_map(unique_nodes))
if len(unique_tips) == 1:
unique_tip_searchers = []
ancestor_all_unique = unique_searcher.find_seen_ancestors(unique_tips)
else:
unique_tip_searchers = []
for tip in unique_tips:
revs_to_search = unique_searcher.find_seen_ancestors([tip])
revs_to_search.update(
common_searcher.find_seen_ancestors(revs_to_search))
searcher = self._make_breadth_first_searcher(revs_to_search)
# We don't care about the starting nodes.
searcher._label = tip
searcher.step()
unique_tip_searchers.append(searcher)
ancestor_all_unique = None
for searcher in unique_tip_searchers:
if ancestor_all_unique is None:
ancestor_all_unique = set(searcher.seen)
else:
ancestor_all_unique = ancestor_all_unique.intersection(
searcher.seen)
# Collapse all the common nodes into a single searcher
all_unique_searcher = self._make_breadth_first_searcher(
ancestor_all_unique)
if ancestor_all_unique:
# We've seen these nodes in all the searchers, so we'll just go to
# the next
all_unique_searcher.step()
# Stop any search tips that are already known as ancestors of the
# unique nodes
stopped_common = common_searcher.stop_searching_any(
common_searcher.find_seen_ancestors(ancestor_all_unique))
total_stopped = 0
for searcher in unique_tip_searchers:
total_stopped += len(searcher.stop_searching_any(
searcher.find_seen_ancestors(ancestor_all_unique)))
if 'graph' in debug.debug_flags:
trace.mutter('For %d unique nodes, created %d + 1 unique searchers'
' (%d stopped search tips, %d common ancestors'
' (%d stopped common)',
len(unique_nodes), len(unique_tip_searchers),
total_stopped, len(ancestor_all_unique),
len(stopped_common))
return all_unique_searcher, unique_tip_searchers
def _step_unique_and_common_searchers(self, common_searcher,
unique_tip_searchers,
unique_searcher):
"""Step all the searchers"""
newly_seen_common = set(common_searcher.step())
newly_seen_unique = set()
for searcher in unique_tip_searchers:
next = set(searcher.step())
next.update(unique_searcher.find_seen_ancestors(next))
next.update(common_searcher.find_seen_ancestors(next))
for alt_searcher in unique_tip_searchers:
if alt_searcher is searcher:
continue
next.update(alt_searcher.find_seen_ancestors(next))
searcher.start_searching(next)
newly_seen_unique.update(next)
return newly_seen_common, newly_seen_unique
def _find_nodes_common_to_all_unique(self, unique_tip_searchers,
all_unique_searcher,
newly_seen_unique, step_all_unique):
"""Find nodes that are common to all unique_tip_searchers.
If it is time, step the all_unique_searcher, and add its nodes to the
result.
"""
common_to_all_unique_nodes = newly_seen_unique.copy()
for searcher in unique_tip_searchers:
common_to_all_unique_nodes.intersection_update(searcher.seen)
common_to_all_unique_nodes.intersection_update(
all_unique_searcher.seen)
# Step all-unique less frequently than the other searchers.
# In the common case, we don't need to spider out far here, so
# avoid doing extra work.
if step_all_unique:
tstart = time.clock()
nodes = all_unique_searcher.step()
common_to_all_unique_nodes.update(nodes)
if 'graph' in debug.debug_flags:
tdelta = time.clock() - tstart
trace.mutter('all_unique_searcher step() took %.3fs'
'for %d nodes (%d total), iteration: %s',
tdelta, len(nodes), len(all_unique_searcher.seen),
all_unique_searcher._iterations)
return common_to_all_unique_nodes
def _collapse_unique_searchers(self, unique_tip_searchers,
common_to_all_unique_nodes):
"""Combine searchers that are searching the same tips.
When two searchers are searching the same tips, we can stop one of the
searchers. We also know that the maximal set of common ancestors is the
intersection of the two original searchers.
:return: A list of searchers that are searching unique nodes.
"""
# Filter out searchers that don't actually search different
# nodes. We already have the ancestry intersection for them
unique_search_tips = {}
for searcher in unique_tip_searchers:
stopped = searcher.stop_searching_any(common_to_all_unique_nodes)
will_search_set = frozenset(searcher._next_query)
if not will_search_set:
if 'graph' in debug.debug_flags:
trace.mutter('Unique searcher %s was stopped.'
' (%s iterations) %d nodes stopped',
searcher._label,
searcher._iterations,
len(stopped))
elif will_search_set not in unique_search_tips:
# This searcher is searching a unique set of nodes, let it
unique_search_tips[will_search_set] = [searcher]
else:
unique_search_tips[will_search_set].append(searcher)
# TODO: it might be possible to collapse searchers faster when they
# only have *some* search tips in common.
next_unique_searchers = []
for searchers in unique_search_tips.itervalues():
if len(searchers) == 1:
# Searching unique tips, go for it
next_unique_searchers.append(searchers[0])
else:
# These searchers have started searching the same tips, we
# don't need them to cover the same ground. The
# intersection of their ancestry won't change, so create a
# new searcher, combining their histories.
next_searcher = searchers[0]
for searcher in searchers[1:]:
next_searcher.seen.intersection_update(searcher.seen)
if 'graph' in debug.debug_flags:
trace.mutter('Combining %d searchers into a single'
' searcher searching %d nodes with'
' %d ancestry',
len(searchers),
len(next_searcher._next_query),
len(next_searcher.seen))
next_unique_searchers.append(next_searcher)
return next_unique_searchers
def _refine_unique_nodes(self, unique_searcher, all_unique_searcher,
unique_tip_searchers, common_searcher):
"""Steps 5-8 of find_unique_ancestors.
This function returns when common_searcher has stopped searching for
more nodes.
"""
# We step the ancestor_all_unique searcher only every
# STEP_UNIQUE_SEARCHER_EVERY steps.
step_all_unique_counter = 0
# While we still have common nodes to search
while common_searcher._next_query:
(newly_seen_common,
newly_seen_unique) = self._step_unique_and_common_searchers(
common_searcher, unique_tip_searchers, unique_searcher)
# These nodes are common ancestors of all unique nodes
common_to_all_unique_nodes = self._find_nodes_common_to_all_unique(
unique_tip_searchers, all_unique_searcher, newly_seen_unique,
step_all_unique_counter==0)
step_all_unique_counter = ((step_all_unique_counter + 1)
% STEP_UNIQUE_SEARCHER_EVERY)
if newly_seen_common:
# If a 'common' node is an ancestor of all unique searchers, we
# can stop searching it.
common_searcher.stop_searching_any(
all_unique_searcher.seen.intersection(newly_seen_common))
if common_to_all_unique_nodes:
common_to_all_unique_nodes.update(
common_searcher.find_seen_ancestors(
common_to_all_unique_nodes))
# The all_unique searcher can start searching the common nodes
# but everyone else can stop.
# This is the sort of thing where we would like to not have it
# start_searching all of the nodes, but only mark all of them
# as seen, and have it search only the actual tips. Otherwise
# it is another get_parent_map() traversal for it to figure out
# what we already should know.
all_unique_searcher.start_searching(common_to_all_unique_nodes)
common_searcher.stop_searching_any(common_to_all_unique_nodes)
next_unique_searchers = self._collapse_unique_searchers(
unique_tip_searchers, common_to_all_unique_nodes)
if len(unique_tip_searchers) != len(next_unique_searchers):
if 'graph' in debug.debug_flags:
trace.mutter('Collapsed %d unique searchers => %d'
' at %s iterations',
len(unique_tip_searchers),
len(next_unique_searchers),
all_unique_searcher._iterations)
unique_tip_searchers = next_unique_searchers
def get_parent_map(self, revisions):
"""Get a map of key:parent_list for revisions.
This implementation delegates to get_parents, for old parent_providers
that do not supply get_parent_map.
"""
result = {}
for rev, parents in self.get_parents(revisions):
if parents is not None:
result[rev] = parents
return result
def _make_breadth_first_searcher(self, revisions):
return _BreadthFirstSearcher(revisions, self)
def _find_border_ancestors(self, revisions):
"""Find common ancestors with at least one uncommon descendant.
Border ancestors are identified using a breadth-first
search starting at the bottom of the graph. Searches are stopped
whenever a node or one of its descendants is determined to be common.
This will scale with the number of uncommon ancestors.
As well as the border ancestors, a set of seen common ancestors and a
list of sets of seen ancestors for each input revision is returned.
This allows calculation of graph difference from the results of this
operation.
"""
if None in revisions:
raise errors.InvalidRevisionId(None, self)
common_ancestors = set()
searchers = [self._make_breadth_first_searcher([r])
for r in revisions]
active_searchers = searchers[:]
border_ancestors = set()
while True:
newly_seen = set()
for searcher in searchers:
new_ancestors = searcher.step()
if new_ancestors:
newly_seen.update(new_ancestors)
new_common = set()
for revision in newly_seen:
if revision in common_ancestors:
# Not a border ancestor because it was seen as common
# already
new_common.add(revision)
continue
for searcher in searchers:
if revision not in searcher.seen:
break
else:
# This is a border because it is a first common that we see
# after walking for a while.
border_ancestors.add(revision)
new_common.add(revision)
if new_common:
for searcher in searchers:
new_common.update(searcher.find_seen_ancestors(new_common))
for searcher in searchers:
searcher.start_searching(new_common)
common_ancestors.update(new_common)
# Figure out what the searchers will be searching next, and if
# there is only 1 set being searched, then we are done searching,
# since all searchers would have to be searching the same data,
# thus it *must* be in common.
unique_search_sets = set()
for searcher in searchers:
will_search_set = frozenset(searcher._next_query)
if will_search_set not in unique_search_sets:
# This searcher is searching a unique set of nodes, let it
unique_search_sets.add(will_search_set)
if len(unique_search_sets) == 1:
nodes = unique_search_sets.pop()
uncommon_nodes = nodes.difference(common_ancestors)
if uncommon_nodes:
raise AssertionError("Somehow we ended up converging"
" without actually marking them as"
" in common."
"\nStart_nodes: %s"
"\nuncommon_nodes: %s"
% (revisions, uncommon_nodes))
break
return border_ancestors, common_ancestors, searchers
def heads(self, keys):
"""Return the heads from amongst keys.
This is done by searching the ancestries of each key. Any key that is
reachable from another key is not returned; all the others are.
This operation scales with the relative depth between any two keys. If
any two keys are completely disconnected all ancestry of both sides
will be retrieved.
:param keys: An iterable of keys.
:return: A set of the heads. Note that as a set there is no ordering
information. Callers will need to filter their input to create
order if they need it.
"""
candidate_heads = set(keys)
if revision.NULL_REVISION in candidate_heads:
# NULL_REVISION is only a head if it is the only entry
candidate_heads.remove(revision.NULL_REVISION)
if not candidate_heads:
return set([revision.NULL_REVISION])
if len(candidate_heads) < 2:
return candidate_heads
searchers = dict((c, self._make_breadth_first_searcher([c]))
for c in candidate_heads)
active_searchers = dict(searchers)
# skip over the actual candidate for each searcher
for searcher in active_searchers.itervalues():
searcher.next()
# The common walker finds nodes that are common to two or more of the
# input keys, so that we don't access all history when a currently
# uncommon search point actually meets up with something behind a
# common search point. Common search points do not keep searches
# active; they just allow us to make searches inactive without
# accessing all history.
common_walker = self._make_breadth_first_searcher([])
while len(active_searchers) > 0:
ancestors = set()
# advance searches
try:
common_walker.next()
except StopIteration:
# No common points being searched at this time.
pass
for candidate in active_searchers.keys():
try:
searcher = active_searchers[candidate]
except KeyError:
# rare case: we deleted candidate in a previous iteration
# through this for loop, because it was determined to be
# a descendant of another candidate.
continue
try:
ancestors.update(searcher.next())
except StopIteration:
del active_searchers[candidate]
continue
# process found nodes
new_common = set()
for ancestor in ancestors:
if ancestor in candidate_heads:
candidate_heads.remove(ancestor)
del searchers[ancestor]
if ancestor in active_searchers:
del active_searchers[ancestor]
# it may meet up with a known common node
if ancestor in common_walker.seen:
# some searcher has encountered our known common nodes:
# just stop it
ancestor_set = set([ancestor])
for searcher in searchers.itervalues():
searcher.stop_searching_any(ancestor_set)
else:
# or it may have been just reached by all the searchers:
for searcher in searchers.itervalues():
if ancestor not in searcher.seen:
break
else:
# The final active searcher has just reached this node,
# making it be known as a descendant of all candidates,
# so we can stop searching it, and any seen ancestors
new_common.add(ancestor)
for searcher in searchers.itervalues():
seen_ancestors =\
searcher.find_seen_ancestors([ancestor])
searcher.stop_searching_any(seen_ancestors)
common_walker.start_searching(new_common)
return candidate_heads
def find_merge_order(self, tip_revision_id, lca_revision_ids):
"""Find the order that each revision was merged into tip.
This basically just walks backwards with a stack, and walks left-first
until it finds a node to stop.
"""
if len(lca_revision_ids) == 1:
return list(lca_revision_ids)
looking_for = set(lca_revision_ids)
# TODO: Is there a way we could do this "faster" by batching up the
# get_parent_map requests?
# TODO: Should we also be culling the ancestry search right away? We
# could add looking_for to the "stop" list, and walk their
# ancestry in batched mode. The flip side is it might mean we walk a
# lot of "stop" nodes, rather than only the minimum.
# Then again, without it we may trace back into ancestry we could have
# stopped early.
stack = [tip_revision_id]
found = []
stop = set()
while stack and looking_for:
next = stack.pop()
stop.add(next)
if next in looking_for:
found.append(next)
looking_for.remove(next)
if len(looking_for) == 1:
found.append(looking_for.pop())
break
continue
parent_ids = self.get_parent_map([next]).get(next, None)
if not parent_ids: # Ghost, nothing to search here
continue
for parent_id in reversed(parent_ids):
# TODO: (performance) We see the parent at this point, but we
# wait to mark it until later to make sure we get left
# parents before right parents. However, instead of
# waiting until we have traversed enough parents, we
# could instead note that we've found it, and once all
# parents are in the stack, just reverse iterate the
# stack for them.
if parent_id not in stop:
# this will need to be searched
stack.append(parent_id)
stop.add(parent_id)
return found
def find_unique_lca(self, left_revision, right_revision,
count_steps=False):
"""Find a unique LCA.
Find lowest common ancestors. If there is no unique common
ancestor, find the lowest common ancestors of those ancestors.
Iteration stops when a unique lowest common ancestor is found.
The graph origin is necessarily a unique lowest common ancestor.
Note that None is not an acceptable substitute for NULL_REVISION.
in the input for this method.
:param count_steps: If True, the return value will be a tuple of
(unique_lca, steps) where steps is the number of times that
find_lca was run. If False, only unique_lca is returned.
"""
revisions = [left_revision, right_revision]
steps = 0
while True:
steps += 1
lca = self.find_lca(*revisions)
if len(lca) == 1:
result = lca.pop()
if count_steps:
return result, steps
else:
return result
if len(lca) == 0:
raise errors.NoCommonAncestor(left_revision, right_revision)
revisions = lca
def iter_ancestry(self, revision_ids):
"""Iterate the ancestry of this revision.
:param revision_ids: Nodes to start the search
:return: Yield tuples mapping a revision_id to its parents for the
ancestry of revision_id.
Ghosts will be returned with None as their parents, and nodes
with no parents will have NULL_REVISION as their only parent. (As
defined by get_parent_map.)
There will also be a node for (NULL_REVISION, ())
"""
pending = set(revision_ids)
processed = set()
while pending:
processed.update(pending)
next_map = self.get_parent_map(pending)
next_pending = set()
for item in next_map.iteritems():
yield item
next_pending.update(p for p in item[1] if p not in processed)
ghosts = pending.difference(next_map)
for ghost in ghosts:
yield (ghost, None)
pending = next_pending
def iter_topo_order(self, revisions):
"""Iterate through the input revisions in topological order.
This sorting only ensures that parents come before their children.
An ancestor may sort after a descendant if the relationship is not
visible in the supplied list of revisions.
"""
sorter = tsort.TopoSorter(self.get_parent_map(revisions))
return sorter.iter_topo_order()
def is_ancestor(self, candidate_ancestor, candidate_descendant):
"""Determine whether a revision is an ancestor of another.
We answer this using heads() as heads() has the logic to perform the
smallest number of parent lookups to determine the ancestral
relationship between N revisions.
"""
return set([candidate_descendant]) == self.heads(
[candidate_ancestor, candidate_descendant])
def is_between(self, revid, lower_bound_revid, upper_bound_revid):
"""Determine whether a revision is between two others.
returns true if and only if:
lower_bound_revid <= revid <= upper_bound_revid
"""
return ((upper_bound_revid is None or
self.is_ancestor(revid, upper_bound_revid)) and
(lower_bound_revid is None or
self.is_ancestor(lower_bound_revid, revid)))
def _search_for_extra_common(self, common, searchers):
"""Make sure that unique nodes are genuinely unique.
After _find_border_ancestors, all nodes marked "common" are indeed
common. Some of the nodes considered unique are not, due to history
shortcuts stopping the searches early.
We know that we have searched enough when all common search tips are
descended from all unique (uncommon) nodes because we know that a node
cannot be an ancestor of its own ancestor.
:param common: A set of common nodes
:param searchers: The searchers returned from _find_border_ancestors
:return: None
"""
# Basic algorithm...
# A) The passed in searchers should all be on the same tips, thus
# they should be considered the "common" searchers.
# B) We find the difference between the searchers, these are the
# "unique" nodes for each side.
# C) We do a quick culling so that we only start searching from the
# more interesting unique nodes. (A unique ancestor is more
# interesting than any of its children.)
# D) We start searching for ancestors common to all unique nodes.
# E) We have the common searchers stop searching any ancestors of
# nodes found by (D)
# F) When there are no more common search tips, we stop
# TODO: We need a way to remove unique_searchers when they overlap with
# other unique searchers.
if len(searchers) != 2:
raise NotImplementedError(
"Algorithm not yet implemented for > 2 searchers")
common_searchers = searchers
left_searcher = searchers[0]
right_searcher = searchers[1]
unique = left_searcher.seen.symmetric_difference(right_searcher.seen)
if not unique: # No unique nodes, nothing to do
return
total_unique = len(unique)
unique = self._remove_simple_descendants(unique,
self.get_parent_map(unique))
simple_unique = len(unique)
unique_searchers = []
for revision_id in unique:
if revision_id in left_searcher.seen:
parent_searcher = left_searcher
else:
parent_searcher = right_searcher
revs_to_search = parent_searcher.find_seen_ancestors([revision_id])
if not revs_to_search: # XXX: This shouldn't be possible
revs_to_search = [revision_id]
searcher = self._make_breadth_first_searcher(revs_to_search)
# We don't care about the starting nodes.
searcher.step()
unique_searchers.append(searcher)
# possible todo: aggregate the common searchers into a single common
# searcher, just make sure that we include the nodes into the .seen
# properties of the original searchers
ancestor_all_unique = None
for searcher in unique_searchers:
if ancestor_all_unique is None:
ancestor_all_unique = set(searcher.seen)
else:
ancestor_all_unique = ancestor_all_unique.intersection(
searcher.seen)
trace.mutter('Started %s unique searchers for %s unique revisions',
simple_unique, total_unique)
while True: # If we have no more nodes we have nothing to do
newly_seen_common = set()
for searcher in common_searchers:
newly_seen_common.update(searcher.step())
newly_seen_unique = set()
for searcher in unique_searchers:
newly_seen_unique.update(searcher.step())
new_common_unique = set()
for revision in newly_seen_unique:
for searcher in unique_searchers:
if revision not in searcher.seen:
break
else:
# This is a border because it is a first common that we see
# after walking for a while.
new_common_unique.add(revision)
if newly_seen_common:
# These are nodes descended from one of the 'common' searchers.
# Make sure all searchers are on the same page
for searcher in common_searchers:
newly_seen_common.update(
searcher.find_seen_ancestors(newly_seen_common))
# We start searching the whole ancestry. It is a bit wasteful,
# though. We really just want to mark all of these nodes as
# 'seen' and then start just the tips. However, it requires a
# get_parent_map() call to figure out the tips anyway, and all
# redundant requests should be fairly fast.
for searcher in common_searchers:
searcher.start_searching(newly_seen_common)
# If a 'common' node is an ancestor of all unique searchers, we
# can stop searching it.
stop_searching_common = ancestor_all_unique.intersection(
newly_seen_common)
if stop_searching_common:
for searcher in common_searchers:
searcher.stop_searching_any(stop_searching_common)
if new_common_unique:
# We found some ancestors that are common
for searcher in unique_searchers:
new_common_unique.update(
searcher.find_seen_ancestors(new_common_unique))
# Since these are common, we can grab another set of ancestors
# that we have seen
for searcher in common_searchers:
new_common_unique.update(
searcher.find_seen_ancestors(new_common_unique))
# We can tell all of the unique searchers to start at these
# nodes, and tell all of the common searchers to *stop*
# searching these nodes
for searcher in unique_searchers:
searcher.start_searching(new_common_unique)
for searcher in common_searchers:
searcher.stop_searching_any(new_common_unique)
ancestor_all_unique.update(new_common_unique)
# Filter out searchers that don't actually search different
# nodes. We already have the ancestry intersection for them
next_unique_searchers = []
unique_search_sets = set()
for searcher in unique_searchers:
will_search_set = frozenset(searcher._next_query)
if will_search_set not in unique_search_sets:
# This searcher is searching a unique set of nodes, let it
unique_search_sets.add(will_search_set)
next_unique_searchers.append(searcher)
unique_searchers = next_unique_searchers
for searcher in common_searchers:
if searcher._next_query:
break
else:
# All common searcher have stopped searching
return
def _remove_simple_descendants(self, revisions, parent_map):
"""remove revisions which are children of other ones in the set
This doesn't do any graph searching, it just checks the immediate
parent_map to find if there are any children which can be removed.
:param revisions: A set of revision_ids
:return: A set of revision_ids with the children removed
"""
simple_ancestors = revisions.copy()
# TODO: jam 20071214 we *could* restrict it to searching only the
# parent_map of revisions already present in 'revisions', but
# considering the general use case, I think this is actually
# better.
# This is the same as the following loop. I don't know that it is any
# faster.
## simple_ancestors.difference_update(r for r, p_ids in parent_map.iteritems()
## if p_ids is not None and revisions.intersection(p_ids))
## return simple_ancestors
# Yet Another Way, invert the parent map (which can be cached)
## descendants = {}
## for revision_id, parent_ids in parent_map.iteritems():
## for p_id in parent_ids:
## descendants.setdefault(p_id, []).append(revision_id)
## for revision in revisions.intersection(descendants):
## simple_ancestors.difference_update(descendants[revision])
## return simple_ancestors
for revision, parent_ids in parent_map.iteritems():
if parent_ids is None:
continue
for parent_id in parent_ids:
if parent_id in revisions:
# This node has a parent present in the set, so we can
# remove it
simple_ancestors.discard(revision)
break
return simple_ancestors
class HeadsCache(object):
"""A cache of results for graph heads calls."""
def __init__(self, graph):
self.graph = graph
self._heads = {}
def heads(self, keys):
"""Return the heads of keys.
This matches the API of Graph.heads(), specifically the return value is
a set which can be mutated, and ordering of the input is not preserved
in the output.
:see also: Graph.heads.
:param keys: The keys to calculate heads for.
:return: A set containing the heads, which may be mutated without
affecting future lookups.
"""
keys = frozenset(keys)
try:
return set(self._heads[keys])
except KeyError:
heads = self.graph.heads(keys)
self._heads[keys] = heads
return set(heads)
class FrozenHeadsCache(object):
"""Cache heads() calls, assuming the caller won't modify them."""
def __init__(self, graph):
self.graph = graph
self._heads = {}
def heads(self, keys):
"""Return the heads of keys.
Similar to Graph.heads(). The main difference is that the return value
is a frozen set which cannot be mutated.
:see also: Graph.heads.
:param keys: The keys to calculate heads for.
:return: A frozenset containing the heads.
"""
keys = frozenset(keys)
try:
return self._heads[keys]
except KeyError:
heads = frozenset(self.graph.heads(keys))
self._heads[keys] = heads
return heads
def cache(self, keys, heads):
"""Store a known value."""
self._heads[frozenset(keys)] = frozenset(heads)
class _BreadthFirstSearcher(object):
"""Parallel search breadth-first the ancestry of revisions.
This class implements the iterator protocol, but additionally
1. provides a set of seen ancestors, and
2. allows some ancestries to be unsearched, via stop_searching_any
"""
def __init__(self, revisions, parents_provider):
self._iterations = 0
self._next_query = set(revisions)
self.seen = set()
self._started_keys = set(self._next_query)
self._stopped_keys = set()
self._parents_provider = parents_provider
self._returning = 'next_with_ghosts'
self._current_present = set()
self._current_ghosts = set()
self._current_parents = {}
def __repr__(self):
if self._iterations:
prefix = "searching"
else:
prefix = "starting"
search = '%s=%r' % (prefix, list(self._next_query))
return ('_BreadthFirstSearcher(iterations=%d, %s,'
' seen=%r)' % (self._iterations, search, list(self.seen)))
def get_result(self):
"""Get a SearchResult for the current state of this searcher.
:return: A SearchResult for this search so far. The SearchResult is
static - the search can be advanced and the search result will not
be invalidated or altered.
"""
if self._returning == 'next':
# We have to know the current nodes children to be able to list the
# exclude keys for them. However, while we could have a second
# look-ahead result buffer and shuffle things around, this method
# is typically only called once per search - when memoising the
# results of the search.
found, ghosts, next, parents = self._do_query(self._next_query)
# pretend we didn't query: perhaps we should tweak _do_query to be
# entirely stateless?
self.seen.difference_update(next)
next_query = next.union(ghosts)
else:
next_query = self._next_query
excludes = self._stopped_keys.union(next_query)
included_keys = self.seen.difference(excludes)
return SearchResult(self._started_keys, excludes, len(included_keys),
included_keys)
def step(self):
try:
return self.next()
except StopIteration:
return ()
def next(self):
"""Return the next ancestors of this revision.
Ancestors are returned in the order they are seen in a breadth-first
traversal. No ancestor will be returned more than once. Ancestors are
returned before their parentage is queried, so ghosts and missing
revisions (including the start revisions) are included in the result.
This can save a round trip in LCA style calculation by allowing
convergence to be detected without reading the data for the revision
the convergence occurs on.
:return: A set of revision_ids.
"""
if self._returning != 'next':
# switch to returning the query, not the results.
self._returning = 'next'
self._iterations += 1
else:
self._advance()
if len(self._next_query) == 0:
raise StopIteration()
# We have seen what we're querying at this point as we are returning
# the query, not the results.
self.seen.update(self._next_query)
return self._next_query
def next_with_ghosts(self):
"""Return the next found ancestors, with ghosts split out.
Ancestors are returned in the order they are seen in a breadth-first
traversal. No ancestor will be returned more than once. Ancestors are
returned only after asking for their parents, which allows us to detect
which revisions are ghosts and which are not.
:return: A tuple with (present ancestors, ghost ancestors) sets.
"""
if self._returning != 'next_with_ghosts':
# switch to returning the results, not the current query.
self._returning = 'next_with_ghosts'
self._advance()
if len(self._next_query) == 0:
raise StopIteration()
self._advance()
return self._current_present, self._current_ghosts
def _advance(self):
"""Advance the search.
Updates self.seen, self._next_query, self._current_present,
self._current_ghosts, self._current_parents and self._iterations.
"""
self._iterations += 1
found, ghosts, next, parents = self._do_query(self._next_query)
self._current_present = found
self._current_ghosts = ghosts
self._next_query = next
self._current_parents = parents
# ghosts are implicit stop points, otherwise the search cannot be
# repeated when ghosts are filled.
self._stopped_keys.update(ghosts)
def _do_query(self, revisions):
"""Query for revisions.
Adds revisions to the seen set.
:param revisions: Revisions to query.
:return: A tuple: (set(found_revisions), set(ghost_revisions),
set(parents_of_found_revisions), dict(found_revisions:parents)).
"""
found_revisions = set()
parents_of_found = set()
# revisions may contain nodes that point to other nodes in revisions:
# we want to filter them out.
self.seen.update(revisions)
parent_map = self._parents_provider.get_parent_map(revisions)
found_revisions.update(parent_map)
for rev_id, parents in parent_map.iteritems():
if parents is None:
continue
new_found_parents = [p for p in parents if p not in self.seen]
if new_found_parents:
# Calling set.update() with an empty generator is actually
# rather expensive.
parents_of_found.update(new_found_parents)
ghost_revisions = revisions - found_revisions
return found_revisions, ghost_revisions, parents_of_found, parent_map
def __iter__(self):
return self
def find_seen_ancestors(self, revisions):
"""Find ancestors of these revisions that have already been seen.
This function generally makes the assumption that querying for the
parents of a node that has already been queried is reasonably cheap.
(eg, not a round trip to a remote host).
"""
# TODO: Often we might ask one searcher for its seen ancestors, and
# then ask another searcher the same question. This can result in
# searching the same revisions repeatedly if the two searchers
# have a lot of overlap.
all_seen = self.seen
pending = set(revisions).intersection(all_seen)
seen_ancestors = set(pending)
if self._returning == 'next':
# self.seen contains what nodes have been returned, not what nodes
# have been queried. We don't want to probe for nodes that haven't
# been searched yet.
not_searched_yet = self._next_query
else:
not_searched_yet = ()
pending.difference_update(not_searched_yet)
get_parent_map = self._parents_provider.get_parent_map
while pending:
parent_map = get_parent_map(pending)
all_parents = []
# We don't care if it is a ghost, since it can't be seen if it is
# a ghost
for parent_ids in parent_map.itervalues():
all_parents.extend(parent_ids)
next_pending = all_seen.intersection(all_parents).difference(seen_ancestors)
seen_ancestors.update(next_pending)
next_pending.difference_update(not_searched_yet)
pending = next_pending
return seen_ancestors
def stop_searching_any(self, revisions):
"""
Remove any of the specified revisions from the search list.
None of the specified revisions are required to be present in the
search list.
It is okay to call stop_searching_any() for revisions which were seen
in previous iterations. It is the callers responsibility to call
find_seen_ancestors() to make sure that current search tips that are
ancestors of those revisions are also stopped. All explicitly stopped
revisions will be excluded from the search result's get_keys(), though.
"""
# TODO: does this help performance?
# if not revisions:
# return set()
revisions = frozenset(revisions)
if self._returning == 'next':
stopped = self._next_query.intersection(revisions)
self._next_query = self._next_query.difference(revisions)
else:
stopped_present = self._current_present.intersection(revisions)
stopped = stopped_present.union(
self._current_ghosts.intersection(revisions))
self._current_present.difference_update(stopped)
self._current_ghosts.difference_update(stopped)
# stopping 'x' should stop returning parents of 'x', but
# not if 'y' always references those same parents
stop_rev_references = {}
for rev in stopped_present:
for parent_id in self._current_parents[rev]:
if parent_id not in stop_rev_references:
stop_rev_references[parent_id] = 0
stop_rev_references[parent_id] += 1
# if only the stopped revisions reference it, the ref count will be
# 0 after this loop
for parents in self._current_parents.itervalues():
for parent_id in parents:
try:
stop_rev_references[parent_id] -= 1
except KeyError:
pass
stop_parents = set()
for rev_id, refs in stop_rev_references.iteritems():
if refs == 0:
stop_parents.add(rev_id)
self._next_query.difference_update(stop_parents)
self._stopped_keys.update(stopped)
self._stopped_keys.update(revisions)
return stopped
def start_searching(self, revisions):
"""Add revisions to the search.
The parents of revisions will be returned from the next call to next()
or next_with_ghosts(). If next_with_ghosts was the most recently used
next* call then the return value is the result of looking up the
ghost/not ghost status of revisions. (A tuple (present, ghosted)).
"""
revisions = frozenset(revisions)
self._started_keys.update(revisions)
new_revisions = revisions.difference(self.seen)
if self._returning == 'next':
self._next_query.update(new_revisions)
self.seen.update(new_revisions)
else:
# perform a query on revisions
revs, ghosts, query, parents = self._do_query(revisions)
self._stopped_keys.update(ghosts)
self._current_present.update(revs)
self._current_ghosts.update(ghosts)
self._next_query.update(query)
self._current_parents.update(parents)
return revs, ghosts
class SearchResult(object):
"""The result of a breadth first search.
A SearchResult provides the ability to reconstruct the search or access a
set of the keys the search found.
"""
def __init__(self, start_keys, exclude_keys, key_count, keys):
"""Create a SearchResult.
:param start_keys: The keys the search started at.
:param exclude_keys: The keys the search excludes.
:param key_count: The total number of keys (from start to but not
including exclude).
:param keys: The keys the search found. Note that in future we may get
a SearchResult from a smart server, in which case the keys list is
not necessarily immediately available.
"""
self._recipe = ('search', start_keys, exclude_keys, key_count)
self._keys = frozenset(keys)
def get_recipe(self):
"""Return a recipe that can be used to replay this search.
The recipe allows reconstruction of the same results at a later date
without knowing all the found keys. The essential elements are a list
of keys to start and and to stop at. In order to give reproducible
results when ghosts are encountered by a search they are automatically
added to the exclude list (or else ghost filling may alter the
results).
:return: A tuple ('search', start_keys_set, exclude_keys_set,
revision_count). To recreate the results of this search, create a
breadth first searcher on the same graph starting at start_keys.
Then call next() (or next_with_ghosts()) repeatedly, and on every
result, call stop_searching_any on any keys from the exclude_keys
set. The revision_count value acts as a trivial cross-check - the
found revisions of the new search should have as many elements as
revision_count. If it does not, then additional revisions have been
ghosted since the search was executed the first time and the second
time.
"""
return self._recipe
def get_keys(self):
"""Return the keys found in this search.
:return: A set of keys.
"""
return self._keys
def is_empty(self):
"""Return false if the search lists 1 or more revisions."""
return self._recipe[3] == 0
def refine(self, seen, referenced):
"""Create a new search by refining this search.
:param seen: Revisions that have been satisfied.
:param referenced: Revision references observed while satisfying some
of this search.
"""
start = self._recipe[1]
exclude = self._recipe[2]
count = self._recipe[3]
keys = self.get_keys()
# New heads = referenced + old heads - seen things - exclude
pending_refs = set(referenced)
pending_refs.update(start)
pending_refs.difference_update(seen)
pending_refs.difference_update(exclude)
# New exclude = old exclude + satisfied heads
seen_heads = start.intersection(seen)
exclude.update(seen_heads)
# keys gets seen removed
keys = keys - seen
# length is reduced by len(seen)
count -= len(seen)
return SearchResult(pending_refs, exclude, count, keys)
class PendingAncestryResult(object):
"""A search result that will reconstruct the ancestry for some graph heads.
Unlike SearchResult, this doesn't hold the complete search result in
memory, it just holds a description of how to generate it.
"""
def __init__(self, heads, repo):
"""Constructor.
:param heads: an iterable of graph heads.
:param repo: a repository to use to generate the ancestry for the given
heads.
"""
self.heads = frozenset(heads)
self.repo = repo
def get_recipe(self):
"""Return a recipe that can be used to replay this search.
The recipe allows reconstruction of the same results at a later date.
:seealso SearchResult.get_recipe:
:return: A tuple ('proxy-search', start_keys_set, set(), -1)
To recreate this result, create a PendingAncestryResult with the
start_keys_set.
"""
return ('proxy-search', self.heads, set(), -1)
def get_keys(self):
"""See SearchResult.get_keys.
Returns all the keys for the ancestry of the heads, excluding
NULL_REVISION.
"""
return self._get_keys(self.repo.get_graph())
def _get_keys(self, graph):
NULL_REVISION = revision.NULL_REVISION
keys = [key for (key, parents) in graph.iter_ancestry(self.heads)
if key != NULL_REVISION]
return keys
def is_empty(self):
"""Return false if the search lists 1 or more revisions."""
if revision.NULL_REVISION in self.heads:
return len(self.heads) == 1
else:
return len(self.heads) == 0
def refine(self, seen, referenced):
"""Create a new search by refining this search.
:param seen: Revisions that have been satisfied.
:param referenced: Revision references observed while satisfying some
of this search.
"""
referenced = self.heads.union(referenced)
return PendingAncestryResult(referenced - seen, self.repo)
def collapse_linear_regions(parent_map):
"""Collapse regions of the graph that are 'linear'.
For example::
A:[B], B:[C]
can be collapsed by removing B and getting::
A:[C]
:param parent_map: A dictionary mapping children to their parents
:return: Another dictionary with 'linear' chains collapsed
"""
# Note: this isn't a strictly minimal collapse. For example:
# A
# / \
# B C
# \ /
# D
# |
# E
# Will not have 'D' removed, even though 'E' could fit. Also:
# A
# | A
# B => |
# | C
# C
# A and C are both kept because they are edges of the graph. We *could* get
# rid of A if we wanted.
# A
# / \
# B C
# | |
# D E
# \ /
# F
# Will not have any nodes removed, even though you do have an
# 'uninteresting' linear D->B and E->C
children = {}
for child, parents in parent_map.iteritems():
children.setdefault(child, [])
for p in parents:
children.setdefault(p, []).append(child)
orig_children = dict(children)
removed = set()
result = dict(parent_map)
for node in parent_map:
parents = result[node]
if len(parents) == 1:
parent_children = children[parents[0]]
if len(parent_children) != 1:
# This is not the only child
continue
node_children = children[node]
if len(node_children) != 1:
continue
child_parents = result.get(node_children[0], None)
if len(child_parents) != 1:
# This is not its only parent
continue
# The child of this node only points at it, and the parent only has
# this as a child. remove this node, and join the others together
result[node_children[0]] = parents
children[parents[0]] = node_children
del result[node]
del children[node]
removed.add(node)
return result
|