1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
|
# Copyright (C) 2007 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""Indexing facilities."""
__all__ = [
'CombinedGraphIndex',
'GraphIndex',
'GraphIndexBuilder',
'GraphIndexPrefixAdapter',
'InMemoryGraphIndex',
]
from bisect import bisect_right
from cStringIO import StringIO
import re
from bzrlib.lazy_import import lazy_import
lazy_import(globals(), """
from bzrlib import trace
from bzrlib.bisect_multi import bisect_multi_bytes
from bzrlib.revision import NULL_REVISION
from bzrlib.trace import mutter
""")
from bzrlib import (
debug,
errors,
symbol_versioning,
)
_HEADER_READV = (0, 200)
_OPTION_KEY_ELEMENTS = "key_elements="
_OPTION_LEN = "len="
_OPTION_NODE_REFS = "node_ref_lists="
_SIGNATURE = "Bazaar Graph Index 1\n"
_whitespace_re = re.compile('[\t\n\x0b\x0c\r\x00 ]')
_newline_null_re = re.compile('[\n\0]')
class GraphIndexBuilder(object):
"""A builder that can build a GraphIndex.
The resulting graph has the structure:
_SIGNATURE OPTIONS NODES NEWLINE
_SIGNATURE := 'Bazaar Graph Index 1' NEWLINE
OPTIONS := 'node_ref_lists=' DIGITS NEWLINE
NODES := NODE*
NODE := KEY NULL ABSENT? NULL REFERENCES NULL VALUE NEWLINE
KEY := Not-whitespace-utf8
ABSENT := 'a'
REFERENCES := REFERENCE_LIST (TAB REFERENCE_LIST){node_ref_lists - 1}
REFERENCE_LIST := (REFERENCE (CR REFERENCE)*)?
REFERENCE := DIGITS ; digits is the byte offset in the index of the
; referenced key.
VALUE := no-newline-no-null-bytes
"""
def __init__(self, reference_lists=0, key_elements=1):
"""Create a GraphIndex builder.
:param reference_lists: The number of node references lists for each
entry.
:param key_elements: The number of bytestrings in each key.
"""
self.reference_lists = reference_lists
self._keys = set()
self._nodes = {}
self._nodes_by_key = {}
self._key_length = key_elements
def _check_key(self, key):
"""Raise BadIndexKey if key is not a valid key for this index."""
if type(key) != tuple:
raise errors.BadIndexKey(key)
if self._key_length != len(key):
raise errors.BadIndexKey(key)
for element in key:
if not element or _whitespace_re.search(element) is not None:
raise errors.BadIndexKey(element)
def add_node(self, key, value, references=()):
"""Add a node to the index.
:param key: The key. keys are non-empty tuples containing
as many whitespace-free utf8 bytestrings as the key length
defined for this index.
:param references: An iterable of iterables of keys. Each is a
reference to another key.
:param value: The value to associate with the key. It may be any
bytes as long as it does not contain \0 or \n.
"""
self._check_key(key)
if _newline_null_re.search(value) is not None:
raise errors.BadIndexValue(value)
if len(references) != self.reference_lists:
raise errors.BadIndexValue(references)
node_refs = []
for reference_list in references:
for reference in reference_list:
self._check_key(reference)
if reference not in self._nodes:
self._nodes[reference] = ('a', (), '')
node_refs.append(tuple(reference_list))
if key in self._nodes and self._nodes[key][0] == '':
raise errors.BadIndexDuplicateKey(key, self)
self._nodes[key] = ('', tuple(node_refs), value)
self._keys.add(key)
if self._key_length > 1:
key_dict = self._nodes_by_key
if self.reference_lists:
key_value = key, value, tuple(node_refs)
else:
key_value = key, value
# possibly should do this on-demand, but it seems likely it is
# always wanted
# For a key of (foo, bar, baz) create
# _nodes_by_key[foo][bar][baz] = key_value
for subkey in key[:-1]:
key_dict = key_dict.setdefault(subkey, {})
key_dict[key[-1]] = key_value
def finish(self):
lines = [_SIGNATURE]
lines.append(_OPTION_NODE_REFS + str(self.reference_lists) + '\n')
lines.append(_OPTION_KEY_ELEMENTS + str(self._key_length) + '\n')
lines.append(_OPTION_LEN + str(len(self._keys)) + '\n')
prefix_length = sum(len(x) for x in lines)
# references are byte offsets. To avoid having to do nasty
# polynomial work to resolve offsets (references to later in the
# file cannot be determined until all the inbetween references have
# been calculated too) we pad the offsets with 0's to make them be
# of consistent length. Using binary offsets would break the trivial
# file parsing.
# to calculate the width of zero's needed we do three passes:
# one to gather all the non-reference data and the number of references.
# one to pad all the data with reference-length and determine entry
# addresses.
# One to serialise.
# forward sorted by key. In future we may consider topological sorting,
# at the cost of table scans for direct lookup, or a second index for
# direct lookup
nodes = sorted(self._nodes.items())
# if we do not prepass, we don't know how long it will be up front.
expected_bytes = None
# we only need to pre-pass if we have reference lists at all.
if self.reference_lists:
key_offset_info = []
non_ref_bytes = prefix_length
total_references = 0
# TODO use simple multiplication for the constants in this loop.
for key, (absent, references, value) in nodes:
# record the offset known *so far* for this key:
# the non reference bytes to date, and the total references to
# date - saves reaccumulating on the second pass
key_offset_info.append((key, non_ref_bytes, total_references))
# key is literal, value is literal, there are 3 null's, 1 NL
# key is variable length tuple, \x00 between elements
non_ref_bytes += sum(len(element) for element in key)
if self._key_length > 1:
non_ref_bytes += self._key_length - 1
# value is literal bytes, there are 3 null's, 1 NL.
non_ref_bytes += len(value) + 3 + 1
# one byte for absent if set.
if absent:
non_ref_bytes += 1
elif self.reference_lists:
# (ref_lists -1) tabs
non_ref_bytes += self.reference_lists - 1
# (ref-1 cr's per ref_list)
for ref_list in references:
# how many references across the whole file?
total_references += len(ref_list)
# accrue reference separators
if ref_list:
non_ref_bytes += len(ref_list) - 1
# how many digits are needed to represent the total byte count?
digits = 1
possible_total_bytes = non_ref_bytes + total_references*digits
while 10 ** digits < possible_total_bytes:
digits += 1
possible_total_bytes = non_ref_bytes + total_references*digits
expected_bytes = possible_total_bytes + 1 # terminating newline
# resolve key addresses.
key_addresses = {}
for key, non_ref_bytes, total_references in key_offset_info:
key_addresses[key] = non_ref_bytes + total_references*digits
# serialise
format_string = '%%0%sd' % digits
for key, (absent, references, value) in nodes:
flattened_references = []
for ref_list in references:
ref_addresses = []
for reference in ref_list:
ref_addresses.append(format_string % key_addresses[reference])
flattened_references.append('\r'.join(ref_addresses))
string_key = '\x00'.join(key)
lines.append("%s\x00%s\x00%s\x00%s\n" % (string_key, absent,
'\t'.join(flattened_references), value))
lines.append('\n')
result = StringIO(''.join(lines))
if expected_bytes and len(result.getvalue()) != expected_bytes:
raise errors.BzrError('Failed index creation. Internal error:'
' mismatched output length and expected length: %d %d' %
(len(result.getvalue()), expected_bytes))
return result
class GraphIndex(object):
"""An index for data with embedded graphs.
The index maps keys to a list of key reference lists, and a value.
Each node has the same number of key reference lists. Each key reference
list can be empty or an arbitrary length. The value is an opaque NULL
terminated string without any newlines. The storage of the index is
hidden in the interface: keys and key references are always tuples of
bytestrings, never the internal representation (e.g. dictionary offsets).
It is presumed that the index will not be mutated - it is static data.
Successive iter_all_entries calls will read the entire index each time.
Additionally, iter_entries calls will read the index linearly until the
desired keys are found. XXX: This must be fixed before the index is
suitable for production use. :XXX
"""
def __init__(self, transport, name, size):
"""Open an index called name on transport.
:param transport: A bzrlib.transport.Transport.
:param name: A path to provide to transport API calls.
:param size: The size of the index in bytes. This is used for bisection
logic to perform partial index reads. While the size could be
obtained by statting the file this introduced an additional round
trip as well as requiring stat'able transports, both of which are
avoided by having it supplied. If size is None, then bisection
support will be disabled and accessing the index will just stream
all the data.
"""
self._transport = transport
self._name = name
# Becomes a dict of key:(value, reference-list-byte-locations) used by
# the bisection interface to store parsed but not resolved keys.
self._bisect_nodes = None
# Becomes a dict of key:(value, reference-list-keys) which are ready to
# be returned directly to callers.
self._nodes = None
# a sorted list of slice-addresses for the parsed bytes of the file.
# e.g. (0,1) would mean that byte 0 is parsed.
self._parsed_byte_map = []
# a sorted list of keys matching each slice address for parsed bytes
# e.g. (None, 'foo@bar') would mean that the first byte contained no
# key, and the end byte of the slice is the of the data for 'foo@bar'
self._parsed_key_map = []
self._key_count = None
self._keys_by_offset = None
self._nodes_by_key = None
self._size = size
def __eq__(self, other):
"""Equal when self and other were created with the same parameters."""
return (
type(self) == type(other) and
self._transport == other._transport and
self._name == other._name and
self._size == other._size)
def __ne__(self, other):
return not self.__eq__(other)
def _buffer_all(self):
"""Buffer all the index data.
Mutates self._nodes and self.keys_by_offset.
"""
if 'index' in debug.debug_flags:
mutter('Reading entire index %s', self._transport.abspath(self._name))
stream = self._transport.get(self._name)
self._read_prefix(stream)
self._expected_elements = 3 + self._key_length
line_count = 0
# raw data keyed by offset
self._keys_by_offset = {}
# ready-to-return key:value or key:value, node_ref_lists
self._nodes = {}
self._nodes_by_key = {}
trailers = 0
pos = stream.tell()
lines = stream.read().split('\n')
del lines[-1]
_, _, _, trailers = self._parse_lines(lines, pos)
for key, absent, references, value in self._keys_by_offset.itervalues():
if absent:
continue
# resolve references:
if self.node_ref_lists:
node_value = (value, self._resolve_references(references))
else:
node_value = value
self._nodes[key] = node_value
if self._key_length > 1:
subkey = list(reversed(key[:-1]))
key_dict = self._nodes_by_key
if self.node_ref_lists:
key_value = key, node_value[0], node_value[1]
else:
key_value = key, node_value
# possibly should do this on-demand, but it seems likely it is
# always wanted
# For a key of (foo, bar, baz) create
# _nodes_by_key[foo][bar][baz] = key_value
for subkey in key[:-1]:
key_dict = key_dict.setdefault(subkey, {})
key_dict[key[-1]] = key_value
# cache the keys for quick set intersections
self._keys = set(self._nodes)
if trailers != 1:
# there must be one line - the empty trailer line.
raise errors.BadIndexData(self)
def iter_all_entries(self):
"""Iterate over all keys within the index.
:return: An iterable of (index, key, value) or (index, key, value, reference_lists).
The former tuple is used when there are no reference lists in the
index, making the API compatible with simple key:value index types.
There is no defined order for the result iteration - it will be in
the most efficient order for the index.
"""
if 'evil' in debug.debug_flags:
trace.mutter_callsite(3,
"iter_all_entries scales with size of history.")
if self._nodes is None:
self._buffer_all()
if self.node_ref_lists:
for key, (value, node_ref_lists) in self._nodes.iteritems():
yield self, key, value, node_ref_lists
else:
for key, value in self._nodes.iteritems():
yield self, key, value
def _read_prefix(self, stream):
signature = stream.read(len(self._signature()))
if not signature == self._signature():
raise errors.BadIndexFormatSignature(self._name, GraphIndex)
options_line = stream.readline()
if not options_line.startswith(_OPTION_NODE_REFS):
raise errors.BadIndexOptions(self)
try:
self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):-1])
except ValueError:
raise errors.BadIndexOptions(self)
options_line = stream.readline()
if not options_line.startswith(_OPTION_KEY_ELEMENTS):
raise errors.BadIndexOptions(self)
try:
self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):-1])
except ValueError:
raise errors.BadIndexOptions(self)
options_line = stream.readline()
if not options_line.startswith(_OPTION_LEN):
raise errors.BadIndexOptions(self)
try:
self._key_count = int(options_line[len(_OPTION_LEN):-1])
except ValueError:
raise errors.BadIndexOptions(self)
def _resolve_references(self, references):
"""Return the resolved key references for references.
References are resolved by looking up the location of the key in the
_keys_by_offset map and substituting the key name, preserving ordering.
:param references: An iterable of iterables of key locations. e.g.
[[123, 456], [123]]
:return: A tuple of tuples of keys.
"""
node_refs = []
for ref_list in references:
node_refs.append(tuple([self._keys_by_offset[ref][0] for ref in ref_list]))
return tuple(node_refs)
def _find_index(self, range_map, key):
"""Helper for the _parsed_*_index calls.
Given a range map - [(start, end), ...], finds the index of the range
in the map for key if it is in the map, and if it is not there, the
immediately preceeding range in the map.
"""
result = bisect_right(range_map, key) - 1
if result + 1 < len(range_map):
# check the border condition, it may be in result + 1
if range_map[result + 1][0] == key[0]:
return result + 1
return result
def _parsed_byte_index(self, offset):
"""Return the index of the entry immediately before offset.
e.g. if the parsed map has regions 0,10 and 11,12 parsed, meaning that
there is one unparsed byte (the 11th, addressed as[10]). then:
asking for 0 will return 0
asking for 10 will return 0
asking for 11 will return 1
asking for 12 will return 1
"""
key = (offset, 0)
return self._find_index(self._parsed_byte_map, key)
def _parsed_key_index(self, key):
"""Return the index of the entry immediately before key.
e.g. if the parsed map has regions (None, 'a') and ('b','c') parsed,
meaning that keys from None to 'a' inclusive, and 'b' to 'c' inclusive
have been parsed, then:
asking for '' will return 0
asking for 'a' will return 0
asking for 'b' will return 1
asking for 'e' will return 1
"""
search_key = (key, None)
return self._find_index(self._parsed_key_map, search_key)
def _is_parsed(self, offset):
"""Returns True if offset has been parsed."""
index = self._parsed_byte_index(offset)
if index == len(self._parsed_byte_map):
return offset < self._parsed_byte_map[index - 1][1]
start, end = self._parsed_byte_map[index]
return offset >= start and offset < end
def _iter_entries_from_total_buffer(self, keys):
"""Iterate over keys when the entire index is parsed."""
keys = keys.intersection(self._keys)
if self.node_ref_lists:
for key in keys:
value, node_refs = self._nodes[key]
yield self, key, value, node_refs
else:
for key in keys:
yield self, key, self._nodes[key]
def iter_entries(self, keys):
"""Iterate over keys within the index.
:param keys: An iterable providing the keys to be retrieved.
:return: An iterable as per iter_all_entries, but restricted to the
keys supplied. No additional keys will be returned, and every
key supplied that is in the index will be returned.
"""
# PERFORMANCE TODO: parse and bisect all remaining data at some
# threshold of total-index processing/get calling layers that expect to
# read the entire index to use the iter_all_entries method instead.
keys = set(keys)
if not keys:
return []
if self._size is None and self._nodes is None:
self._buffer_all()
if self._nodes is not None:
return self._iter_entries_from_total_buffer(keys)
else:
return (result[1] for result in bisect_multi_bytes(
self._lookup_keys_via_location, self._size, keys))
def iter_entries_prefix(self, keys):
"""Iterate over keys within the index using prefix matching.
Prefix matching is applied within the tuple of a key, not to within
the bytestring of each key element. e.g. if you have the keys ('foo',
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
only the former key is returned.
WARNING: Note that this method currently causes a full index parse
unconditionally (which is reasonably appropriate as it is a means for
thunking many small indices into one larger one and still supplies
iter_all_entries at the thunk layer).
:param keys: An iterable providing the key prefixes to be retrieved.
Each key prefix takes the form of a tuple the length of a key, but
with the last N elements 'None' rather than a regular bytestring.
The first element cannot be 'None'.
:return: An iterable as per iter_all_entries, but restricted to the
keys with a matching prefix to those supplied. No additional keys
will be returned, and every match that is in the index will be
returned.
"""
keys = set(keys)
if not keys:
return
# load data - also finds key lengths
if self._nodes is None:
self._buffer_all()
if self._key_length == 1:
for key in keys:
# sanity check
if key[0] is None:
raise errors.BadIndexKey(key)
if len(key) != self._key_length:
raise errors.BadIndexKey(key)
if self.node_ref_lists:
value, node_refs = self._nodes[key]
yield self, key, value, node_refs
else:
yield self, key, self._nodes[key]
return
for key in keys:
# sanity check
if key[0] is None:
raise errors.BadIndexKey(key)
if len(key) != self._key_length:
raise errors.BadIndexKey(key)
# find what it refers to:
key_dict = self._nodes_by_key
elements = list(key)
# find the subdict whose contents should be returned.
try:
while len(elements) and elements[0] is not None:
key_dict = key_dict[elements[0]]
elements.pop(0)
except KeyError:
# a non-existant lookup.
continue
if len(elements):
dicts = [key_dict]
while dicts:
key_dict = dicts.pop(-1)
# can't be empty or would not exist
item, value = key_dict.iteritems().next()
if type(value) == dict:
# push keys
dicts.extend(key_dict.itervalues())
else:
# yield keys
for value in key_dict.itervalues():
# each value is the key:value:node refs tuple
# ready to yield.
yield (self, ) + value
else:
# the last thing looked up was a terminal element
yield (self, ) + key_dict
def key_count(self):
"""Return an estimate of the number of keys in this index.
For GraphIndex the estimate is exact.
"""
if self._key_count is None:
self._read_and_parse([_HEADER_READV])
return self._key_count
def _lookup_keys_via_location(self, location_keys):
"""Public interface for implementing bisection.
If _buffer_all has been called, then all the data for the index is in
memory, and this method should not be called, as it uses a separate
cache because it cannot pre-resolve all indices, which buffer_all does
for performance.
:param location_keys: A list of location(byte offset), key tuples.
:return: A list of (location_key, result) tuples as expected by
bzrlib.bisect_multi.bisect_multi_bytes.
"""
# Possible improvements:
# - only bisect lookup each key once
# - sort the keys first, and use that to reduce the bisection window
# -----
# this progresses in three parts:
# read data
# parse it
# attempt to answer the question from the now in memory data.
# build the readv request
# for each location, ask for 800 bytes - much more than rows we've seen
# anywhere.
readv_ranges = []
for location, key in location_keys:
# can we answer from cache?
if self._bisect_nodes and key in self._bisect_nodes:
# We have the key parsed.
continue
index = self._parsed_key_index(key)
if (len(self._parsed_key_map) and
self._parsed_key_map[index][0] <= key and
(self._parsed_key_map[index][1] >= key or
# end of the file has been parsed
self._parsed_byte_map[index][1] == self._size)):
# the key has been parsed, so no lookup is needed even if its
# not present.
continue
# - if we have examined this part of the file already - yes
index = self._parsed_byte_index(location)
if (len(self._parsed_byte_map) and
self._parsed_byte_map[index][0] <= location and
self._parsed_byte_map[index][1] > location):
# the byte region has been parsed, so no read is needed.
continue
length = 800
if location + length > self._size:
length = self._size - location
# todo, trim out parsed locations.
if length > 0:
readv_ranges.append((location, length))
# read the header if needed
if self._bisect_nodes is None:
readv_ranges.append(_HEADER_READV)
self._read_and_parse(readv_ranges)
# generate results:
# - figure out <, >, missing, present
# - result present references so we can return them.
result = []
# keys that we cannot answer until we resolve references
pending_references = []
pending_locations = set()
for location, key in location_keys:
# can we answer from cache?
if key in self._bisect_nodes:
# the key has been parsed, so no lookup is needed
if self.node_ref_lists:
# the references may not have been all parsed.
value, refs = self._bisect_nodes[key]
wanted_locations = []
for ref_list in refs:
for ref in ref_list:
if ref not in self._keys_by_offset:
wanted_locations.append(ref)
if wanted_locations:
pending_locations.update(wanted_locations)
pending_references.append((location, key))
continue
result.append(((location, key), (self, key,
value, self._resolve_references(refs))))
else:
result.append(((location, key),
(self, key, self._bisect_nodes[key])))
continue
else:
# has the region the key should be in, been parsed?
index = self._parsed_key_index(key)
if (self._parsed_key_map[index][0] <= key and
(self._parsed_key_map[index][1] >= key or
# end of the file has been parsed
self._parsed_byte_map[index][1] == self._size)):
result.append(((location, key), False))
continue
# no, is the key above or below the probed location:
# get the range of the probed & parsed location
index = self._parsed_byte_index(location)
# if the key is below the start of the range, its below
if key < self._parsed_key_map[index][0]:
direction = -1
else:
direction = +1
result.append(((location, key), direction))
readv_ranges = []
# lookup data to resolve references
for location in pending_locations:
length = 800
if location + length > self._size:
length = self._size - location
# TODO: trim out parsed locations (e.g. if the 800 is into the
# parsed region trim it, and dont use the adjust_for_latency
# facility)
if length > 0:
readv_ranges.append((location, length))
self._read_and_parse(readv_ranges)
for location, key in pending_references:
# answer key references we had to look-up-late.
index = self._parsed_key_index(key)
value, refs = self._bisect_nodes[key]
result.append(((location, key), (self, key,
value, self._resolve_references(refs))))
return result
def _parse_header_from_bytes(self, bytes):
"""Parse the header from a region of bytes.
:param bytes: The data to parse.
:return: An offset, data tuple such as readv yields, for the unparsed
data. (which may length 0).
"""
signature = bytes[0:len(self._signature())]
if not signature == self._signature():
raise errors.BadIndexFormatSignature(self._name, GraphIndex)
lines = bytes[len(self._signature()):].splitlines()
options_line = lines[0]
if not options_line.startswith(_OPTION_NODE_REFS):
raise errors.BadIndexOptions(self)
try:
self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):])
except ValueError:
raise errors.BadIndexOptions(self)
options_line = lines[1]
if not options_line.startswith(_OPTION_KEY_ELEMENTS):
raise errors.BadIndexOptions(self)
try:
self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):])
except ValueError:
raise errors.BadIndexOptions(self)
options_line = lines[2]
if not options_line.startswith(_OPTION_LEN):
raise errors.BadIndexOptions(self)
try:
self._key_count = int(options_line[len(_OPTION_LEN):])
except ValueError:
raise errors.BadIndexOptions(self)
# calculate the bytes we have processed
header_end = (len(signature) + len(lines[0]) + len(lines[1]) +
len(lines[2]) + 3)
self._parsed_bytes(0, None, header_end, None)
# setup parsing state
self._expected_elements = 3 + self._key_length
# raw data keyed by offset
self._keys_by_offset = {}
# keys with the value and node references
self._bisect_nodes = {}
return header_end, bytes[header_end:]
def _parse_region(self, offset, data):
"""Parse node data returned from a readv operation.
:param offset: The byte offset the data starts at.
:param data: The data to parse.
"""
# trim the data.
# end first:
end = offset + len(data)
high_parsed = offset
while True:
# Trivial test - if the current index's end is within the
# low-matching parsed range, we're done.
index = self._parsed_byte_index(high_parsed)
if end < self._parsed_byte_map[index][1]:
return
# print "[%d:%d]" % (offset, end), \
# self._parsed_byte_map[index:index + 2]
high_parsed, last_segment = self._parse_segment(
offset, data, end, index)
if last_segment:
return
def _parse_segment(self, offset, data, end, index):
"""Parse one segment of data.
:param offset: Where 'data' begins in the file.
:param data: Some data to parse a segment of.
:param end: Where data ends
:param index: The current index into the parsed bytes map.
:return: True if the parsed segment is the last possible one in the
range of data.
:return: high_parsed_byte, last_segment.
high_parsed_byte is the location of the highest parsed byte in this
segment, last_segment is True if the parsed segment is the last
possible one in the data block.
"""
# default is to use all data
trim_end = None
# accomodate overlap with data before this.
if offset < self._parsed_byte_map[index][1]:
# overlaps the lower parsed region
# skip the parsed data
trim_start = self._parsed_byte_map[index][1] - offset
# don't trim the start for \n
start_adjacent = True
elif offset == self._parsed_byte_map[index][1]:
# abuts the lower parsed region
# use all data
trim_start = None
# do not trim anything
start_adjacent = True
else:
# does not overlap the lower parsed region
# use all data
trim_start = None
# but trim the leading \n
start_adjacent = False
if end == self._size:
# lines up to the end of all data:
# use it all
trim_end = None
# do not strip to the last \n
end_adjacent = True
last_segment = True
elif index + 1 == len(self._parsed_byte_map):
# at the end of the parsed data
# use it all
trim_end = None
# but strip to the last \n
end_adjacent = False
last_segment = True
elif end == self._parsed_byte_map[index + 1][0]:
# buts up against the next parsed region
# use it all
trim_end = None
# do not strip to the last \n
end_adjacent = True
last_segment = True
elif end > self._parsed_byte_map[index + 1][0]:
# overlaps into the next parsed region
# only consider the unparsed data
trim_end = self._parsed_byte_map[index + 1][0] - offset
# do not strip to the last \n as we know its an entire record
end_adjacent = True
last_segment = end < self._parsed_byte_map[index + 1][1]
else:
# does not overlap into the next region
# use it all
trim_end = None
# but strip to the last \n
end_adjacent = False
last_segment = True
# now find bytes to discard if needed
if not start_adjacent:
# work around python bug in rfind
if trim_start is None:
trim_start = data.find('\n') + 1
else:
trim_start = data.find('\n', trim_start) + 1
if not (trim_start != 0):
raise AssertionError('no \n was present')
# print 'removing start', offset, trim_start, repr(data[:trim_start])
if not end_adjacent:
# work around python bug in rfind
if trim_end is None:
trim_end = data.rfind('\n') + 1
else:
trim_end = data.rfind('\n', None, trim_end) + 1
if not (trim_end != 0):
raise AssertionError('no \n was present')
# print 'removing end', offset, trim_end, repr(data[trim_end:])
# adjust offset and data to the parseable data.
trimmed_data = data[trim_start:trim_end]
if not (trimmed_data):
raise AssertionError('read unneeded data [%d:%d] from [%d:%d]'
% (trim_start, trim_end, offset, offset + len(data)))
if trim_start:
offset += trim_start
# print "parsing", repr(trimmed_data)
# splitlines mangles the \r delimiters.. don't use it.
lines = trimmed_data.split('\n')
del lines[-1]
pos = offset
first_key, last_key, nodes, _ = self._parse_lines(lines, pos)
for key, value in nodes:
self._bisect_nodes[key] = value
self._parsed_bytes(offset, first_key,
offset + len(trimmed_data), last_key)
return offset + len(trimmed_data), last_segment
def _parse_lines(self, lines, pos):
key = None
first_key = None
trailers = 0
nodes = []
for line in lines:
if line == '':
# must be at the end
if self._size:
if not (self._size == pos + 1):
raise AssertionError("%s %s" % (self._size, pos))
trailers += 1
continue
elements = line.split('\0')
if len(elements) != self._expected_elements:
raise errors.BadIndexData(self)
# keys are tuples
key = tuple(elements[:self._key_length])
if first_key is None:
first_key = key
absent, references, value = elements[-3:]
ref_lists = []
for ref_string in references.split('\t'):
ref_lists.append(tuple([
int(ref) for ref in ref_string.split('\r') if ref
]))
ref_lists = tuple(ref_lists)
self._keys_by_offset[pos] = (key, absent, ref_lists, value)
pos += len(line) + 1 # +1 for the \n
if absent:
continue
if self.node_ref_lists:
node_value = (value, ref_lists)
else:
node_value = value
nodes.append((key, node_value))
# print "parsed ", key
return first_key, key, nodes, trailers
def _parsed_bytes(self, start, start_key, end, end_key):
"""Mark the bytes from start to end as parsed.
Calling self._parsed_bytes(1,2) will mark one byte (the one at offset
1) as parsed.
:param start: The start of the parsed region.
:param end: The end of the parsed region.
"""
index = self._parsed_byte_index(start)
new_value = (start, end)
new_key = (start_key, end_key)
if index == -1:
# first range parsed is always the beginning.
self._parsed_byte_map.insert(index, new_value)
self._parsed_key_map.insert(index, new_key)
return
# four cases:
# new region
# extend lower region
# extend higher region
# combine two regions
if (index + 1 < len(self._parsed_byte_map) and
self._parsed_byte_map[index][1] == start and
self._parsed_byte_map[index + 1][0] == end):
# combine two regions
self._parsed_byte_map[index] = (self._parsed_byte_map[index][0],
self._parsed_byte_map[index + 1][1])
self._parsed_key_map[index] = (self._parsed_key_map[index][0],
self._parsed_key_map[index + 1][1])
del self._parsed_byte_map[index + 1]
del self._parsed_key_map[index + 1]
elif self._parsed_byte_map[index][1] == start:
# extend the lower entry
self._parsed_byte_map[index] = (
self._parsed_byte_map[index][0], end)
self._parsed_key_map[index] = (
self._parsed_key_map[index][0], end_key)
elif (index + 1 < len(self._parsed_byte_map) and
self._parsed_byte_map[index + 1][0] == end):
# extend the higher entry
self._parsed_byte_map[index + 1] = (
start, self._parsed_byte_map[index + 1][1])
self._parsed_key_map[index + 1] = (
start_key, self._parsed_key_map[index + 1][1])
else:
# new entry
self._parsed_byte_map.insert(index + 1, new_value)
self._parsed_key_map.insert(index + 1, new_key)
def _read_and_parse(self, readv_ranges):
"""Read the the ranges and parse the resulting data.
:param readv_ranges: A prepared readv range list.
"""
if readv_ranges:
readv_data = self._transport.readv(self._name, readv_ranges, True,
self._size)
# parse
for offset, data in readv_data:
if self._bisect_nodes is None:
# this must be the start
if not (offset == 0):
raise AssertionError()
offset, data = self._parse_header_from_bytes(data)
# print readv_ranges, "[%d:%d]" % (offset, offset + len(data))
self._parse_region(offset, data)
def _signature(self):
"""The file signature for this index type."""
return _SIGNATURE
def validate(self):
"""Validate that everything in the index can be accessed."""
# iter_all validates completely at the moment, so just do that.
for node in self.iter_all_entries():
pass
class CombinedGraphIndex(object):
"""A GraphIndex made up from smaller GraphIndices.
The backing indices must implement GraphIndex, and are presumed to be
static data.
Queries against the combined index will be made against the first index,
and then the second and so on. The order of index's can thus influence
performance significantly. For example, if one index is on local disk and a
second on a remote server, the local disk index should be before the other
in the index list.
"""
def __init__(self, indices):
"""Create a CombinedGraphIndex backed by indices.
:param indices: An ordered list of indices to query for data.
"""
self._indices = indices
def __repr__(self):
return "%s(%s)" % (
self.__class__.__name__,
', '.join(map(repr, self._indices)))
@symbol_versioning.deprecated_method(symbol_versioning.one_one)
def get_parents(self, revision_ids):
"""See graph._StackedParentsProvider.get_parents.
This implementation thunks the graph.Graph.get_parents api across to
GraphIndex.
:param revision_ids: An iterable of graph keys for this graph.
:return: A list of parent details for each key in revision_ids.
Each parent details will be one of:
* None when the key was missing
* (NULL_REVISION,) when the key has no parents.
* (parent_key, parent_key...) otherwise.
"""
parent_map = self.get_parent_map(revision_ids)
return [parent_map.get(r, None) for r in revision_ids]
def get_parent_map(self, keys):
"""See graph._StackedParentsProvider.get_parent_map"""
search_keys = set(keys)
if NULL_REVISION in search_keys:
search_keys.discard(NULL_REVISION)
found_parents = {NULL_REVISION:[]}
else:
found_parents = {}
for index, key, value, refs in self.iter_entries(search_keys):
parents = refs[0]
if not parents:
parents = (NULL_REVISION,)
found_parents[key] = parents
return found_parents
def insert_index(self, pos, index):
"""Insert a new index in the list of indices to query.
:param pos: The position to insert the index.
:param index: The index to insert.
"""
self._indices.insert(pos, index)
def iter_all_entries(self):
"""Iterate over all keys within the index
Duplicate keys across child indices are presumed to have the same
value and are only reported once.
:return: An iterable of (index, key, reference_lists, value).
There is no defined order for the result iteration - it will be in
the most efficient order for the index.
"""
seen_keys = set()
for index in self._indices:
for node in index.iter_all_entries():
if node[1] not in seen_keys:
yield node
seen_keys.add(node[1])
def iter_entries(self, keys):
"""Iterate over keys within the index.
Duplicate keys across child indices are presumed to have the same
value and are only reported once.
:param keys: An iterable providing the keys to be retrieved.
:return: An iterable of (index, key, reference_lists, value). There is no
defined order for the result iteration - it will be in the most
efficient order for the index.
"""
keys = set(keys)
for index in self._indices:
if not keys:
return
for node in index.iter_entries(keys):
keys.remove(node[1])
yield node
def iter_entries_prefix(self, keys):
"""Iterate over keys within the index using prefix matching.
Duplicate keys across child indices are presumed to have the same
value and are only reported once.
Prefix matching is applied within the tuple of a key, not to within
the bytestring of each key element. e.g. if you have the keys ('foo',
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
only the former key is returned.
:param keys: An iterable providing the key prefixes to be retrieved.
Each key prefix takes the form of a tuple the length of a key, but
with the last N elements 'None' rather than a regular bytestring.
The first element cannot be 'None'.
:return: An iterable as per iter_all_entries, but restricted to the
keys with a matching prefix to those supplied. No additional keys
will be returned, and every match that is in the index will be
returned.
"""
keys = set(keys)
if not keys:
return
seen_keys = set()
for index in self._indices:
for node in index.iter_entries_prefix(keys):
if node[1] in seen_keys:
continue
seen_keys.add(node[1])
yield node
def key_count(self):
"""Return an estimate of the number of keys in this index.
For CombinedGraphIndex this is approximated by the sum of the keys of
the child indices. As child indices may have duplicate keys this can
have a maximum error of the number of child indices * largest number of
keys in any index.
"""
return sum((index.key_count() for index in self._indices), 0)
def validate(self):
"""Validate that everything in the index can be accessed."""
for index in self._indices:
index.validate()
class InMemoryGraphIndex(GraphIndexBuilder):
"""A GraphIndex which operates entirely out of memory and is mutable.
This is designed to allow the accumulation of GraphIndex entries during a
single write operation, where the accumulated entries need to be immediately
available - for example via a CombinedGraphIndex.
"""
def add_nodes(self, nodes):
"""Add nodes to the index.
:param nodes: An iterable of (key, node_refs, value) entries to add.
"""
if self.reference_lists:
for (key, value, node_refs) in nodes:
self.add_node(key, value, node_refs)
else:
for (key, value) in nodes:
self.add_node(key, value)
def iter_all_entries(self):
"""Iterate over all keys within the index
:return: An iterable of (index, key, reference_lists, value). There is no
defined order for the result iteration - it will be in the most
efficient order for the index (in this case dictionary hash order).
"""
if 'evil' in debug.debug_flags:
trace.mutter_callsite(3,
"iter_all_entries scales with size of history.")
if self.reference_lists:
for key, (absent, references, value) in self._nodes.iteritems():
if not absent:
yield self, key, value, references
else:
for key, (absent, references, value) in self._nodes.iteritems():
if not absent:
yield self, key, value
def iter_entries(self, keys):
"""Iterate over keys within the index.
:param keys: An iterable providing the keys to be retrieved.
:return: An iterable of (index, key, value, reference_lists). There is no
defined order for the result iteration - it will be in the most
efficient order for the index (keys iteration order in this case).
"""
keys = set(keys)
if self.reference_lists:
for key in keys.intersection(self._keys):
node = self._nodes[key]
if not node[0]:
yield self, key, node[2], node[1]
else:
for key in keys.intersection(self._keys):
node = self._nodes[key]
if not node[0]:
yield self, key, node[2]
def iter_entries_prefix(self, keys):
"""Iterate over keys within the index using prefix matching.
Prefix matching is applied within the tuple of a key, not to within
the bytestring of each key element. e.g. if you have the keys ('foo',
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
only the former key is returned.
:param keys: An iterable providing the key prefixes to be retrieved.
Each key prefix takes the form of a tuple the length of a key, but
with the last N elements 'None' rather than a regular bytestring.
The first element cannot be 'None'.
:return: An iterable as per iter_all_entries, but restricted to the
keys with a matching prefix to those supplied. No additional keys
will be returned, and every match that is in the index will be
returned.
"""
# XXX: To much duplication with the GraphIndex class; consider finding
# a good place to pull out the actual common logic.
keys = set(keys)
if not keys:
return
if self._key_length == 1:
for key in keys:
# sanity check
if key[0] is None:
raise errors.BadIndexKey(key)
if len(key) != self._key_length:
raise errors.BadIndexKey(key)
node = self._nodes[key]
if node[0]:
continue
if self.reference_lists:
yield self, key, node[2], node[1]
else:
yield self, key, node[2]
return
for key in keys:
# sanity check
if key[0] is None:
raise errors.BadIndexKey(key)
if len(key) != self._key_length:
raise errors.BadIndexKey(key)
# find what it refers to:
key_dict = self._nodes_by_key
elements = list(key)
# find the subdict to return
try:
while len(elements) and elements[0] is not None:
key_dict = key_dict[elements[0]]
elements.pop(0)
except KeyError:
# a non-existant lookup.
continue
if len(elements):
dicts = [key_dict]
while dicts:
key_dict = dicts.pop(-1)
# can't be empty or would not exist
item, value = key_dict.iteritems().next()
if type(value) == dict:
# push keys
dicts.extend(key_dict.itervalues())
else:
# yield keys
for value in key_dict.itervalues():
yield (self, ) + value
else:
yield (self, ) + key_dict
def key_count(self):
"""Return an estimate of the number of keys in this index.
For InMemoryGraphIndex the estimate is exact.
"""
return len(self._keys)
def validate(self):
"""In memory index's have no known corruption at the moment."""
class GraphIndexPrefixAdapter(object):
"""An adapter between GraphIndex with different key lengths.
Queries against this will emit queries against the adapted Graph with the
prefix added, queries for all items use iter_entries_prefix. The returned
nodes will have their keys and node references adjusted to remove the
prefix. Finally, an add_nodes_callback can be supplied - when called the
nodes and references being added will have prefix prepended.
"""
def __init__(self, adapted, prefix, missing_key_length,
add_nodes_callback=None):
"""Construct an adapter against adapted with prefix."""
self.adapted = adapted
self.prefix_key = prefix + (None,)*missing_key_length
self.prefix = prefix
self.prefix_len = len(prefix)
self.add_nodes_callback = add_nodes_callback
def add_nodes(self, nodes):
"""Add nodes to the index.
:param nodes: An iterable of (key, node_refs, value) entries to add.
"""
# save nodes in case its an iterator
nodes = tuple(nodes)
translated_nodes = []
try:
# Add prefix_key to each reference node_refs is a tuple of tuples,
# so split it apart, and add prefix_key to the internal reference
for (key, value, node_refs) in nodes:
adjusted_references = (
tuple(tuple(self.prefix + ref_node for ref_node in ref_list)
for ref_list in node_refs))
translated_nodes.append((self.prefix + key, value,
adjusted_references))
except ValueError:
# XXX: TODO add an explicit interface for getting the reference list
# status, to handle this bit of user-friendliness in the API more
# explicitly.
for (key, value) in nodes:
translated_nodes.append((self.prefix + key, value))
self.add_nodes_callback(translated_nodes)
def add_node(self, key, value, references=()):
"""Add a node to the index.
:param key: The key. keys are non-empty tuples containing
as many whitespace-free utf8 bytestrings as the key length
defined for this index.
:param references: An iterable of iterables of keys. Each is a
reference to another key.
:param value: The value to associate with the key. It may be any
bytes as long as it does not contain \0 or \n.
"""
self.add_nodes(((key, value, references), ))
def _strip_prefix(self, an_iter):
"""Strip prefix data from nodes and return it."""
for node in an_iter:
# cross checks
if node[1][:self.prefix_len] != self.prefix:
raise errors.BadIndexData(self)
for ref_list in node[3]:
for ref_node in ref_list:
if ref_node[:self.prefix_len] != self.prefix:
raise errors.BadIndexData(self)
yield node[0], node[1][self.prefix_len:], node[2], (
tuple(tuple(ref_node[self.prefix_len:] for ref_node in ref_list)
for ref_list in node[3]))
def iter_all_entries(self):
"""Iterate over all keys within the index
iter_all_entries is implemented against the adapted index using
iter_entries_prefix.
:return: An iterable of (index, key, reference_lists, value). There is no
defined order for the result iteration - it will be in the most
efficient order for the index (in this case dictionary hash order).
"""
return self._strip_prefix(self.adapted.iter_entries_prefix([self.prefix_key]))
def iter_entries(self, keys):
"""Iterate over keys within the index.
:param keys: An iterable providing the keys to be retrieved.
:return: An iterable of (index, key, value, reference_lists). There is no
defined order for the result iteration - it will be in the most
efficient order for the index (keys iteration order in this case).
"""
return self._strip_prefix(self.adapted.iter_entries(
self.prefix + key for key in keys))
def iter_entries_prefix(self, keys):
"""Iterate over keys within the index using prefix matching.
Prefix matching is applied within the tuple of a key, not to within
the bytestring of each key element. e.g. if you have the keys ('foo',
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
only the former key is returned.
:param keys: An iterable providing the key prefixes to be retrieved.
Each key prefix takes the form of a tuple the length of a key, but
with the last N elements 'None' rather than a regular bytestring.
The first element cannot be 'None'.
:return: An iterable as per iter_all_entries, but restricted to the
keys with a matching prefix to those supplied. No additional keys
will be returned, and every match that is in the index will be
returned.
"""
return self._strip_prefix(self.adapted.iter_entries_prefix(
self.prefix + key for key in keys))
def key_count(self):
"""Return an estimate of the number of keys in this index.
For GraphIndexPrefixAdapter this is relatively expensive - key
iteration with the prefix is done.
"""
return len(list(self.iter_all_entries()))
def validate(self):
"""Call the adapted's validate."""
self.adapted.validate()
|