~bzr-pqm/bzr/bzr.dev

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
# Copyright (C) 2007 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

from bzrlib import (
    errors,
    graph as _mod_graph,
    symbol_versioning,
    tests,
    )
from bzrlib.revision import NULL_REVISION
from bzrlib.tests import TestCaseWithMemoryTransport


# Ancestry 1:
#
#  NULL_REVISION
#       |
#     rev1
#      /\
#  rev2a rev2b
#     |    |
#   rev3  /
#     |  /
#   rev4
ancestry_1 = {'rev1': [NULL_REVISION], 'rev2a': ['rev1'], 'rev2b': ['rev1'],
              'rev3': ['rev2a'], 'rev4': ['rev3', 'rev2b']}


# Ancestry 2:
#
#  NULL_REVISION
#    /    \
# rev1a  rev1b
#   |
# rev2a
#   |
# rev3a
#   |
# rev4a
ancestry_2 = {'rev1a': [NULL_REVISION], 'rev2a': ['rev1a'],
              'rev1b': [NULL_REVISION], 'rev3a': ['rev2a'], 'rev4a': ['rev3a']}


# Criss cross ancestry
#
#     NULL_REVISION
#         |
#        rev1
#        /  \
#    rev2a  rev2b
#       |\  /|
#       |  X |
#       |/  \|
#    rev3a  rev3b
criss_cross = {'rev1': [NULL_REVISION], 'rev2a': ['rev1'], 'rev2b': ['rev1'],
               'rev3a': ['rev2a', 'rev2b'], 'rev3b': ['rev2b', 'rev2a']}


# Criss-cross 2
#
#  NULL_REVISION
#    /   \
# rev1a  rev1b
#   |\   /|
#   | \ / |
#   |  X  |
#   | / \ |
#   |/   \|
# rev2a  rev2b
criss_cross2 = {'rev1a': [NULL_REVISION], 'rev1b': [NULL_REVISION],
                'rev2a': ['rev1a', 'rev1b'], 'rev2b': ['rev1b', 'rev1a']}


# Mainline:
#
#  NULL_REVISION
#       |
#      rev1
#      /  \
#      | rev2b
#      |  /
#     rev2a
mainline = {'rev1': [NULL_REVISION], 'rev2a': ['rev1', 'rev2b'],
            'rev2b': ['rev1']}


# feature branch:
#
#  NULL_REVISION
#       |
#      rev1
#       |
#     rev2b
#       |
#     rev3b
feature_branch = {'rev1': [NULL_REVISION],
                  'rev2b': ['rev1'], 'rev3b': ['rev2b']}


# History shortcut
#  NULL_REVISION
#       |
#     rev1------
#     /  \      \
#  rev2a rev2b rev2c
#    |  /   \   /
#  rev3a    rev3b
history_shortcut = {'rev1': [NULL_REVISION], 'rev2a': ['rev1'],
                    'rev2b': ['rev1'], 'rev2c': ['rev1'],
                    'rev3a': ['rev2a', 'rev2b'], 'rev3b': ['rev2b', 'rev2c']}

# Extended history shortcut
#  NULL_REVISION
#       |
#       a
#       |\
#       b |
#       | |
#       c |
#       | |
#       d |
#       |\|
#       e f
extended_history_shortcut = {'a': [NULL_REVISION],
                             'b': ['a'],
                             'c': ['b'],
                             'd': ['c'],
                             'e': ['d'],
                             'f': ['a', 'd'],
                            }

# Double shortcut
# Both sides will see 'A' first, even though it is actually a decendent of a
# different common revision.
#
#  NULL_REVISION
#       |
#       a
#      /|\
#     / b \
#    /  |  \
#   |   c   |
#   |  / \  |
#   | d   e |
#   |/     \|
#   f       g

double_shortcut = {'a':[NULL_REVISION], 'b':['a'], 'c':['b'],
                   'd':['c'], 'e':['c'], 'f':['a', 'd'],
                   'g':['a', 'e']}

# Complex shortcut
# This has a failure mode in that a shortcut will find some nodes in common,
# but the common searcher won't have time to find that one branch is actually
# in common. The extra nodes at the beginning are because we want to avoid
# walking off the graph. Specifically, node G should be considered common, but
# is likely to be seen by M long before the common searcher finds it.
#
# NULL_REVISION
#     |
#     a
#     |
#     b
#     |
#     c
#     |
#     d
#     |\
#     e f
#     | |\
#     | g h
#     |/| |
#     i j |
#     | | |
#     | k |
#     | | |
#     | l |
#     |/|/
#     m n
complex_shortcut = {'a':[NULL_REVISION], 'b':['a'], 'c':['b'], 'd':['c'],
                    'e':['d'], 'f':['d'], 'g':['f'], 'h':['f'],
                    'i':['e', 'g'], 'j':['g'], 'k':['j'],
                    'l':['k'], 'm':['i', 'l'], 'n':['l', 'h']}

# NULL_REVISION
#     |
#     a
#     |
#     b
#     |
#     c
#     |
#     d
#     |\
#     e |
#     | |
#     f |
#     | |
#     g h
#     | |\
#     i | j
#     |\| |
#     | k |
#     | | |
#     | l |
#     | | |
#     | m |
#     | | |
#     | n |
#     | | |
#     | o |
#     | | |
#     | p |
#     | | |
#     | q |
#     | | |
#     | r |
#     | | |
#     | s |
#     | | |
#     |/|/
#     t u
complex_shortcut2 = {'a':[NULL_REVISION], 'b':['a'], 'c':['b'], 'd':['c'],
                    'e':['d'], 'f':['e'], 'g':['f'], 'h':['d'], 'i':['g'],
                    'j':['h'], 'k':['h', 'i'], 'l':['k'], 'm':['l'], 'n':['m'],
                    'o':['n'], 'p':['o'], 'q':['p'], 'r':['q'], 's':['r'],
                    't':['i', 's'], 'u':['s', 'j'], 
                    }

# Graph where different walkers will race to find the common and uncommon
# nodes.
#
# NULL_REVISION
#     |
#     a
#     |
#     b
#     |
#     c
#     |
#     d
#     |\
#     e k
#     | |
#     f-+-p
#     | | |
#     | l |
#     | | |
#     | m |
#     | |\|
#     g n q
#     |\| |
#     h o |
#     |/| |
#     i r |
#     | | |
#     | s |
#     | | |
#     | t |
#     | | |
#     | u |
#     | | |
#     | v |
#     | | |
#     | w |
#     | | |
#     | x |
#     | |\|
#     | y z
#     |/
#     j
#
# y is found to be common right away, but is the start of a long series of
# common commits.
# o is actually common, but the i-j shortcut makes it look like it is actually
# unique to j at first, you have to traverse all of y->o to find it.
# q,n give the walker from j a common point to stop searching, as does p,f.
# k-n exists so that the second pass still has nodes that are worth searching,
# rather than instantly cancelling the extra walker.

racing_shortcuts = {'a':[NULL_REVISION], 'b':['a'], 'c':['b'], 'd':['c'],
    'e':['d'], 'f':['e'], 'g':['f'], 'h':['g'], 'i':['h', 'o'], 'j':['i', 'y'],
    'k':['d'], 'l':['k'], 'm':['l'], 'n':['m'], 'o':['n', 'g'], 'p':['f'],
    'q':['p', 'm'], 'r':['o'], 's':['r'], 't':['s'], 'u':['t'], 'v':['u'],
    'w':['v'], 'x':['w'], 'y':['x'], 'z':['x', 'q']}


# A graph with multiple nodes unique to one side.
#
# NULL_REVISION
#     |
#     a
#     |
#     b
#     |
#     c
#     |
#     d
#     |\
#     e f
#     |\ \
#     g h i
#     |\ \ \
#     j k l m
#     | |/ x|
#     | n o p
#     | |/  |
#     | q   |
#     | |   |
#     | r   |
#     | |   |
#     | s   |
#     | |   |
#     | t   |
#     | |   |
#     | u   |
#     | |   |
#     | v   |
#     | |   |
#     | w   |
#     | |   |
#     | x   |
#     |/ \ /
#     y   z
#

multiple_interesting_unique = {'a':[NULL_REVISION], 'b':['a'], 'c':['b'],
    'd':['c'], 'e':['d'], 'f':['d'], 'g':['e'], 'h':['e'], 'i':['f'],
    'j':['g'], 'k':['g'], 'l':['h'], 'm':['i'], 'n':['k', 'l'],
    'o':['m'], 'p':['m', 'l'], 'q':['n', 'o'], 'r':['q'], 's':['r'],
    't':['s'], 'u':['t'], 'v':['u'], 'w':['v'], 'x':['w'],
    'y':['j', 'x'], 'z':['x', 'p']}


# Shortcut with extra root
# We have a long history shortcut, and an extra root, which is why we can't
# stop searchers based on seeing NULL_REVISION
#  NULL_REVISION
#       |   |
#       a   |
#       |\  |
#       b | |
#       | | |
#       c | |
#       | | |
#       d | g
#       |\|/
#       e f
shortcut_extra_root = {'a': [NULL_REVISION],
                       'b': ['a'],
                       'c': ['b'],
                       'd': ['c'],
                       'e': ['d'],
                       'f': ['a', 'd', 'g'],
                       'g': [NULL_REVISION],
                      }

#  NULL_REVISION
#       |
#       f
#       |
#       e
#      / \
#     b   d
#     | \ |
#     a   c

boundary = {'a': ['b'], 'c': ['b', 'd'], 'b':['e'], 'd':['e'], 'e': ['f'],
            'f':[NULL_REVISION]}


# A graph that contains a ghost
#  NULL_REVISION
#       |
#       f
#       |
#       e   g
#      / \ /
#     b   d
#     | \ |
#     a   c

with_ghost = {'a': ['b'], 'c': ['b', 'd'], 'b':['e'], 'd':['e', 'g'],
              'e': ['f'], 'f':[NULL_REVISION], NULL_REVISION:()}



class InstrumentedParentsProvider(object):

    def __init__(self, parents_provider):
        self.calls = []
        self._real_parents_provider = parents_provider

    def get_parent_map(self, nodes):
        self.calls.extend(nodes)
        return self._real_parents_provider.get_parent_map(nodes)


class TestGraph(TestCaseWithMemoryTransport):

    def make_graph(self, ancestors):
        return _mod_graph.Graph(_mod_graph.DictParentsProvider(ancestors))

    def prepare_memory_tree(self, location):
        tree = self.make_branch_and_memory_tree(location)
        tree.lock_write()
        tree.add('.')
        return tree

    def build_ancestry(self, tree, ancestors):
        """Create an ancestry as specified by a graph dict

        :param tree: A tree to use
        :param ancestors: a dict of {node: [node_parent, ...]}
        """
        pending = [NULL_REVISION]
        descendants = {}
        for descendant, parents in ancestors.iteritems():
            for parent in parents:
                descendants.setdefault(parent, []).append(descendant)
        while len(pending) > 0:
            cur_node = pending.pop()
            for descendant in descendants.get(cur_node, []):
                if tree.branch.repository.has_revision(descendant):
                    continue
                parents = [p for p in ancestors[descendant] if p is not
                           NULL_REVISION]
                if len([p for p in parents if not
                    tree.branch.repository.has_revision(p)]) > 0:
                    continue
                tree.set_parent_ids(parents)
                if len(parents) > 0:
                    left_parent = parents[0]
                else:
                    left_parent = NULL_REVISION
                tree.branch.set_last_revision_info(
                    len(tree.branch._lefthand_history(left_parent)),
                    left_parent)
                tree.commit(descendant, rev_id=descendant)
                pending.append(descendant)

    def test_lca(self):
        """Test finding least common ancestor.

        ancestry_1 should always have a single common ancestor
        """
        graph = self.make_graph(ancestry_1)
        self.assertRaises(errors.InvalidRevisionId, graph.find_lca, None)
        self.assertEqual(set([NULL_REVISION]),
                         graph.find_lca(NULL_REVISION, NULL_REVISION))
        self.assertEqual(set([NULL_REVISION]),
                         graph.find_lca(NULL_REVISION, 'rev1'))
        self.assertEqual(set(['rev1']), graph.find_lca('rev1', 'rev1'))
        self.assertEqual(set(['rev1']), graph.find_lca('rev2a', 'rev2b'))

    def test_no_unique_lca(self):
        """Test error when one revision is not in the graph"""
        graph = self.make_graph(ancestry_1)
        self.assertRaises(errors.NoCommonAncestor, graph.find_unique_lca,
                          'rev1', '1rev')

    def test_lca_criss_cross(self):
        """Test least-common-ancestor after a criss-cross merge."""
        graph = self.make_graph(criss_cross)
        self.assertEqual(set(['rev2a', 'rev2b']),
                         graph.find_lca('rev3a', 'rev3b'))
        self.assertEqual(set(['rev2b']),
                         graph.find_lca('rev3a', 'rev3b', 'rev2b'))

    def test_lca_shortcut(self):
        """Test least-common ancestor on this history shortcut"""
        graph = self.make_graph(history_shortcut)
        self.assertEqual(set(['rev2b']), graph.find_lca('rev3a', 'rev3b'))

    def test_recursive_unique_lca(self):
        """Test finding a unique least common ancestor.

        ancestry_1 should always have a single common ancestor
        """
        graph = self.make_graph(ancestry_1)
        self.assertEqual(NULL_REVISION,
                         graph.find_unique_lca(NULL_REVISION, NULL_REVISION))
        self.assertEqual(NULL_REVISION,
                         graph.find_unique_lca(NULL_REVISION, 'rev1'))
        self.assertEqual('rev1', graph.find_unique_lca('rev1', 'rev1'))
        self.assertEqual('rev1', graph.find_unique_lca('rev2a', 'rev2b'))
        self.assertEqual(('rev1', 1,),
                         graph.find_unique_lca('rev2a', 'rev2b',
                         count_steps=True))

    def assertRemoveDescendants(self, expected, graph, revisions):
        parents = graph.get_parent_map(revisions)
        self.assertEqual(expected,
                         graph._remove_simple_descendants(revisions, parents))

    def test__remove_simple_descendants(self):
        graph = self.make_graph(ancestry_1)
        self.assertRemoveDescendants(set(['rev1']), graph,
            set(['rev1', 'rev2a', 'rev2b', 'rev3', 'rev4']))

    def test__remove_simple_descendants_disjoint(self):
        graph = self.make_graph(ancestry_1)
        self.assertRemoveDescendants(set(['rev1', 'rev3']), graph,
            set(['rev1', 'rev3']))

    def test__remove_simple_descendants_chain(self):
        graph = self.make_graph(ancestry_1)
        self.assertRemoveDescendants(set(['rev1']), graph,
            set(['rev1', 'rev2a', 'rev3']))

    def test__remove_simple_descendants_siblings(self):
        graph = self.make_graph(ancestry_1)
        self.assertRemoveDescendants(set(['rev2a', 'rev2b']), graph,
            set(['rev2a', 'rev2b', 'rev3']))

    def test_unique_lca_criss_cross(self):
        """Ensure we don't pick non-unique lcas in a criss-cross"""
        graph = self.make_graph(criss_cross)
        self.assertEqual('rev1', graph.find_unique_lca('rev3a', 'rev3b'))
        lca, steps = graph.find_unique_lca('rev3a', 'rev3b', count_steps=True)
        self.assertEqual('rev1', lca)
        self.assertEqual(2, steps)

    def test_unique_lca_null_revision(self):
        """Ensure we pick NULL_REVISION when necessary"""
        graph = self.make_graph(criss_cross2)
        self.assertEqual('rev1b', graph.find_unique_lca('rev2a', 'rev1b'))
        self.assertEqual(NULL_REVISION,
                         graph.find_unique_lca('rev2a', 'rev2b'))

    def test_unique_lca_null_revision2(self):
        """Ensure we pick NULL_REVISION when necessary"""
        graph = self.make_graph(ancestry_2)
        self.assertEqual(NULL_REVISION,
                         graph.find_unique_lca('rev4a', 'rev1b'))

    def test_lca_double_shortcut(self):
        graph = self.make_graph(double_shortcut)
        self.assertEqual('c', graph.find_unique_lca('f', 'g'))

    def test_common_ancestor_two_repos(self):
        """Ensure we do unique_lca using data from two repos"""
        mainline_tree = self.prepare_memory_tree('mainline')
        self.build_ancestry(mainline_tree, mainline)
        self.addCleanup(mainline_tree.unlock)

        # This is cheating, because the revisions in the graph are actually
        # different revisions, despite having the same revision-id.
        feature_tree = self.prepare_memory_tree('feature')
        self.build_ancestry(feature_tree, feature_branch)
        self.addCleanup(feature_tree.unlock)

        graph = mainline_tree.branch.repository.get_graph(
            feature_tree.branch.repository)
        self.assertEqual('rev2b', graph.find_unique_lca('rev2a', 'rev3b'))

    def test_graph_difference(self):
        graph = self.make_graph(ancestry_1)
        self.assertEqual((set(), set()), graph.find_difference('rev1', 'rev1'))
        self.assertEqual((set(), set(['rev1'])),
                         graph.find_difference(NULL_REVISION, 'rev1'))
        self.assertEqual((set(['rev1']), set()),
                         graph.find_difference('rev1', NULL_REVISION))
        self.assertEqual((set(['rev2a', 'rev3']), set(['rev2b'])),
                         graph.find_difference('rev3', 'rev2b'))
        self.assertEqual((set(['rev4', 'rev3', 'rev2a']), set()),
                         graph.find_difference('rev4', 'rev2b'))

    def test_graph_difference_separate_ancestry(self):
        graph = self.make_graph(ancestry_2)
        self.assertEqual((set(['rev1a']), set(['rev1b'])),
                         graph.find_difference('rev1a', 'rev1b'))
        self.assertEqual((set(['rev1a', 'rev2a', 'rev3a', 'rev4a']),
                          set(['rev1b'])),
                         graph.find_difference('rev4a', 'rev1b'))

    def test_graph_difference_criss_cross(self):
        graph = self.make_graph(criss_cross)
        self.assertEqual((set(['rev3a']), set(['rev3b'])),
                         graph.find_difference('rev3a', 'rev3b'))
        self.assertEqual((set([]), set(['rev3b', 'rev2b'])),
                         graph.find_difference('rev2a', 'rev3b'))

    def test_graph_difference_extended_history(self):
        graph = self.make_graph(extended_history_shortcut)
        self.assertEqual((set(['e']), set(['f'])),
                         graph.find_difference('e', 'f'))
        self.assertEqual((set(['f']), set(['e'])),
                         graph.find_difference('f', 'e'))

    def test_graph_difference_double_shortcut(self):
        graph = self.make_graph(double_shortcut)
        self.assertEqual((set(['d', 'f']), set(['e', 'g'])),
                         graph.find_difference('f', 'g'))

    def test_graph_difference_complex_shortcut(self):
        graph = self.make_graph(complex_shortcut)
        self.assertEqual((set(['m', 'i', 'e']), set(['n', 'h'])),
                         graph.find_difference('m', 'n'))

    def test_graph_difference_complex_shortcut2(self):
        graph = self.make_graph(complex_shortcut2)
        self.assertEqual((set(['t']), set(['j', 'u'])),
                         graph.find_difference('t', 'u'))

    def test_graph_difference_shortcut_extra_root(self):
        graph = self.make_graph(shortcut_extra_root)
        self.assertEqual((set(['e']), set(['f', 'g'])),
                         graph.find_difference('e', 'f'))

    def test_stacked_parents_provider(self):
        parents1 = _mod_graph.DictParentsProvider({'rev2': ['rev3']})
        parents2 = _mod_graph.DictParentsProvider({'rev1': ['rev4']})
        stacked = _mod_graph._StackedParentsProvider([parents1, parents2])
        self.assertEqual({'rev1':['rev4'], 'rev2':['rev3']},
                         stacked.get_parent_map(['rev1', 'rev2']))
        self.assertEqual({'rev2':['rev3'], 'rev1':['rev4']},
                         stacked.get_parent_map(['rev2', 'rev1']))
        self.assertEqual({'rev2':['rev3']},
                         stacked.get_parent_map(['rev2', 'rev2']))
        self.assertEqual({'rev1':['rev4']},
                         stacked.get_parent_map(['rev1', 'rev1']))

    def test_iter_topo_order(self):
        graph = self.make_graph(ancestry_1)
        args = ['rev2a', 'rev3', 'rev1']
        topo_args = list(graph.iter_topo_order(args))
        self.assertEqual(set(args), set(topo_args))
        self.assertTrue(topo_args.index('rev2a') > topo_args.index('rev1'))
        self.assertTrue(topo_args.index('rev2a') < topo_args.index('rev3'))

    def test_is_ancestor(self):
        graph = self.make_graph(ancestry_1)
        self.assertEqual(True, graph.is_ancestor('null:', 'null:'))
        self.assertEqual(True, graph.is_ancestor('null:', 'rev1'))
        self.assertEqual(False, graph.is_ancestor('rev1', 'null:'))
        self.assertEqual(True, graph.is_ancestor('null:', 'rev4'))
        self.assertEqual(False, graph.is_ancestor('rev4', 'null:'))
        self.assertEqual(False, graph.is_ancestor('rev4', 'rev2b'))
        self.assertEqual(True, graph.is_ancestor('rev2b', 'rev4'))
        self.assertEqual(False, graph.is_ancestor('rev2b', 'rev3'))
        self.assertEqual(False, graph.is_ancestor('rev3', 'rev2b'))
        instrumented_provider = InstrumentedParentsProvider(graph)
        instrumented_graph = _mod_graph.Graph(instrumented_provider)
        instrumented_graph.is_ancestor('rev2a', 'rev2b')
        self.assertTrue('null:' not in instrumented_provider.calls)

    def test_is_ancestor_boundary(self):
        """Ensure that we avoid searching the whole graph.
        
        This requires searching through b as a common ancestor, so we
        can identify that e is common.
        """
        graph = self.make_graph(boundary)
        instrumented_provider = InstrumentedParentsProvider(graph)
        graph = _mod_graph.Graph(instrumented_provider)
        self.assertFalse(graph.is_ancestor('a', 'c'))
        self.assertTrue('null:' not in instrumented_provider.calls)

    def test_iter_ancestry(self):
        nodes = boundary.copy()
        nodes[NULL_REVISION] = ()
        graph = self.make_graph(nodes)
        expected = nodes.copy()
        expected.pop('a') # 'a' is not in the ancestry of 'c', all the
                          # other nodes are
        self.assertEqual(expected, dict(graph.iter_ancestry(['c'])))
        self.assertEqual(nodes, dict(graph.iter_ancestry(['a', 'c'])))

    def test_iter_ancestry_with_ghost(self):
        graph = self.make_graph(with_ghost)
        expected = with_ghost.copy()
        # 'a' is not in the ancestry of 'c', and 'g' is a ghost
        expected['g'] = None
        self.assertEqual(expected, dict(graph.iter_ancestry(['a', 'c'])))
        expected.pop('a') 
        self.assertEqual(expected, dict(graph.iter_ancestry(['c'])))

    def test_filter_candidate_lca(self):
        """Test filter_candidate_lca for a corner case

        This tests the case where we encounter the end of iteration for 'e'
        in the same pass as we discover that 'd' is an ancestor of 'e', and
        therefore 'e' can't be an lca.

        To compensate for different dict orderings on other Python
        implementations, we mirror 'd' and 'e' with 'b' and 'a'.
        """
        # This test is sensitive to the iteration order of dicts.  It will
        # pass incorrectly if 'e' and 'a' sort before 'c'
        #
        # NULL_REVISION
        #     / \
        #    a   e
        #    |   |
        #    b   d
        #     \ /
        #      c
        graph = self.make_graph({'c': ['b', 'd'], 'd': ['e'], 'b': ['a'],
                                 'a': [NULL_REVISION], 'e': [NULL_REVISION]})
        self.assertEqual(set(['c']), graph.heads(['a', 'c', 'e']))

    def test_heads_null(self):
        graph = self.make_graph(ancestry_1)
        self.assertEqual(set(['null:']), graph.heads(['null:']))
        self.assertEqual(set(['rev1']), graph.heads(['null:', 'rev1']))
        self.assertEqual(set(['rev1']), graph.heads(['rev1', 'null:']))
        self.assertEqual(set(['rev1']), graph.heads(set(['rev1', 'null:'])))
        self.assertEqual(set(['rev1']), graph.heads(('rev1', 'null:')))

    def test_heads_one(self):
        # A single node will always be a head
        graph = self.make_graph(ancestry_1)
        self.assertEqual(set(['null:']), graph.heads(['null:']))
        self.assertEqual(set(['rev1']), graph.heads(['rev1']))
        self.assertEqual(set(['rev2a']), graph.heads(['rev2a']))
        self.assertEqual(set(['rev2b']), graph.heads(['rev2b']))
        self.assertEqual(set(['rev3']), graph.heads(['rev3']))
        self.assertEqual(set(['rev4']), graph.heads(['rev4']))

    def test_heads_single(self):
        graph = self.make_graph(ancestry_1)
        self.assertEqual(set(['rev4']), graph.heads(['null:', 'rev4']))
        self.assertEqual(set(['rev2a']), graph.heads(['rev1', 'rev2a']))
        self.assertEqual(set(['rev2b']), graph.heads(['rev1', 'rev2b']))
        self.assertEqual(set(['rev3']), graph.heads(['rev1', 'rev3']))
        self.assertEqual(set(['rev4']), graph.heads(['rev1', 'rev4']))
        self.assertEqual(set(['rev4']), graph.heads(['rev2a', 'rev4']))
        self.assertEqual(set(['rev4']), graph.heads(['rev2b', 'rev4']))
        self.assertEqual(set(['rev4']), graph.heads(['rev3', 'rev4']))

    def test_heads_two_heads(self):
        graph = self.make_graph(ancestry_1)
        self.assertEqual(set(['rev2a', 'rev2b']),
                         graph.heads(['rev2a', 'rev2b']))
        self.assertEqual(set(['rev3', 'rev2b']),
                         graph.heads(['rev3', 'rev2b']))

    def test_heads_criss_cross(self):
        graph = self.make_graph(criss_cross)
        self.assertEqual(set(['rev2a']),
                         graph.heads(['rev2a', 'rev1']))
        self.assertEqual(set(['rev2b']),
                         graph.heads(['rev2b', 'rev1']))
        self.assertEqual(set(['rev3a']),
                         graph.heads(['rev3a', 'rev1']))
        self.assertEqual(set(['rev3b']),
                         graph.heads(['rev3b', 'rev1']))
        self.assertEqual(set(['rev2a', 'rev2b']),
                         graph.heads(['rev2a', 'rev2b']))
        self.assertEqual(set(['rev3a']),
                         graph.heads(['rev3a', 'rev2a']))
        self.assertEqual(set(['rev3a']),
                         graph.heads(['rev3a', 'rev2b']))
        self.assertEqual(set(['rev3a']),
                         graph.heads(['rev3a', 'rev2a', 'rev2b']))
        self.assertEqual(set(['rev3b']),
                         graph.heads(['rev3b', 'rev2a']))
        self.assertEqual(set(['rev3b']),
                         graph.heads(['rev3b', 'rev2b']))
        self.assertEqual(set(['rev3b']),
                         graph.heads(['rev3b', 'rev2a', 'rev2b']))
        self.assertEqual(set(['rev3a', 'rev3b']),
                         graph.heads(['rev3a', 'rev3b']))
        self.assertEqual(set(['rev3a', 'rev3b']),
                         graph.heads(['rev3a', 'rev3b', 'rev2a', 'rev2b']))

    def test_heads_shortcut(self):
        graph = self.make_graph(history_shortcut)

        self.assertEqual(set(['rev2a', 'rev2b', 'rev2c']),
                         graph.heads(['rev2a', 'rev2b', 'rev2c']))
        self.assertEqual(set(['rev3a', 'rev3b']),
                         graph.heads(['rev3a', 'rev3b']))
        self.assertEqual(set(['rev3a', 'rev3b']),
                         graph.heads(['rev2a', 'rev3a', 'rev3b']))
        self.assertEqual(set(['rev2a', 'rev3b']),
                         graph.heads(['rev2a', 'rev3b']))
        self.assertEqual(set(['rev2c', 'rev3a']),
                         graph.heads(['rev2c', 'rev3a']))

    def _run_heads_break_deeper(self, graph_dict, search):
        """Run heads on a graph-as-a-dict.
        
        If the search asks for the parents of 'deeper' the test will fail.
        """
        class stub(object):
            pass
        def get_parent_map(keys):
            result = {}
            for key in keys:
                if key == 'deeper':
                    self.fail('key deeper was accessed')
                result[key] = graph_dict[key]
            return result
        an_obj = stub()
        an_obj.get_parent_map = get_parent_map
        graph = _mod_graph.Graph(an_obj)
        return graph.heads(search)

    def test_heads_limits_search(self):
        # test that a heads query does not search all of history
        graph_dict = {
            'left':['common'],
            'right':['common'],
            'common':['deeper'],
        }
        self.assertEqual(set(['left', 'right']),
            self._run_heads_break_deeper(graph_dict, ['left', 'right']))

    def test_heads_limits_search_assymetric(self):
        # test that a heads query does not search all of history
        graph_dict = {
            'left':['midleft'],
            'midleft':['common'],
            'right':['common'],
            'common':['aftercommon'],
            'aftercommon':['deeper'],
        }
        self.assertEqual(set(['left', 'right']),
            self._run_heads_break_deeper(graph_dict, ['left', 'right']))

    def test_heads_limits_search_common_search_must_continue(self):
        # test that common nodes are still queried, preventing
        # all-the-way-to-origin behaviour in the following graph:
        graph_dict = {
            'h1':['shortcut', 'common1'],
            'h2':['common1'],
            'shortcut':['common2'],
            'common1':['common2'],
            'common2':['deeper'],
        }
        self.assertEqual(set(['h1', 'h2']),
            self._run_heads_break_deeper(graph_dict, ['h1', 'h2']))

    def test_breadth_first_search_start_ghosts(self):
        graph = self.make_graph({})
        # with_ghosts reports the ghosts
        search = graph._make_breadth_first_searcher(['a-ghost'])
        self.assertEqual((set(), set(['a-ghost'])), search.next_with_ghosts())
        self.assertRaises(StopIteration, search.next_with_ghosts)
        # next includes them
        search = graph._make_breadth_first_searcher(['a-ghost'])
        self.assertEqual(set(['a-ghost']), search.next())
        self.assertRaises(StopIteration, search.next)

    def test_breadth_first_search_deep_ghosts(self):
        graph = self.make_graph({
            'head':['present'],
            'present':['child', 'ghost'],
            'child':[],
            })
        # with_ghosts reports the ghosts
        search = graph._make_breadth_first_searcher(['head'])
        self.assertEqual((set(['head']), set()), search.next_with_ghosts())
        self.assertEqual((set(['present']), set()), search.next_with_ghosts())
        self.assertEqual((set(['child']), set(['ghost'])),
            search.next_with_ghosts())
        self.assertRaises(StopIteration, search.next_with_ghosts)
        # next includes them
        search = graph._make_breadth_first_searcher(['head'])
        self.assertEqual(set(['head']), search.next())
        self.assertEqual(set(['present']), search.next())
        self.assertEqual(set(['child', 'ghost']),
            search.next())
        self.assertRaises(StopIteration, search.next)

    def test_breadth_first_search_change_next_to_next_with_ghosts(self):
        # To make the API robust, we allow calling both next() and
        # next_with_ghosts() on the same searcher.
        graph = self.make_graph({
            'head':['present'],
            'present':['child', 'ghost'],
            'child':[],
            })
        # start with next_with_ghosts
        search = graph._make_breadth_first_searcher(['head'])
        self.assertEqual((set(['head']), set()), search.next_with_ghosts())
        self.assertEqual(set(['present']), search.next())
        self.assertEqual((set(['child']), set(['ghost'])),
            search.next_with_ghosts())
        self.assertRaises(StopIteration, search.next)
        # start with next
        search = graph._make_breadth_first_searcher(['head'])
        self.assertEqual(set(['head']), search.next())
        self.assertEqual((set(['present']), set()), search.next_with_ghosts())
        self.assertEqual(set(['child', 'ghost']),
            search.next())
        self.assertRaises(StopIteration, search.next_with_ghosts)

    def test_breadth_first_change_search(self):
        # Changing the search should work with both next and next_with_ghosts.
        graph = self.make_graph({
            'head':['present'],
            'present':['stopped'],
            'other':['other_2'],
            'other_2':[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        self.assertEqual((set(['head']), set()), search.next_with_ghosts())
        self.assertEqual((set(['present']), set()), search.next_with_ghosts())
        self.assertEqual(set(['present']),
            search.stop_searching_any(['present']))
        self.assertEqual((set(['other']), set(['other_ghost'])),
            search.start_searching(['other', 'other_ghost']))
        self.assertEqual((set(['other_2']), set()), search.next_with_ghosts())
        self.assertRaises(StopIteration, search.next_with_ghosts)
        # next includes them
        search = graph._make_breadth_first_searcher(['head'])
        self.assertEqual(set(['head']), search.next())
        self.assertEqual(set(['present']), search.next())
        self.assertEqual(set(['present']),
            search.stop_searching_any(['present']))
        search.start_searching(['other', 'other_ghost'])
        self.assertEqual(set(['other_2']), search.next())
        self.assertRaises(StopIteration, search.next)

    def assertSeenAndResult(self, instructions, search, next):
        """Check the results of .seen and get_result() for a seach.

        :param instructions: A list of tuples:
            (seen, recipe, included_keys, starts, stops).
            seen, recipe and included_keys are results to check on the search
            and the searches get_result(). starts and stops are parameters to
            pass to start_searching and stop_searching_any during each
            iteration, if they are not None.
        :param search: The search to use.
        :param next: A callable to advance the search.
        """
        for seen, recipe, included_keys, starts, stops in instructions:
            next()
            if starts is not None:
                search.start_searching(starts)
            if stops is not None:
                search.stop_searching_any(stops)
            result = search.get_result()
            self.assertEqual(recipe, result.get_recipe())
            self.assertEqual(set(included_keys), result.get_keys())
            self.assertEqual(seen, search.seen)

    def test_breadth_first_get_result_excludes_current_pending(self):
        graph = self.make_graph({
            'head':['child'],
            'child':[NULL_REVISION],
            NULL_REVISION:[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        # At the start, nothing has been seen, to its all excluded:
        result = search.get_result()
        self.assertEqual((set(['head']), set(['head']), 0),
            result.get_recipe())
        self.assertEqual(set(), result.get_keys())
        self.assertEqual(set(), search.seen)
        # using next:
        expected = [
            (set(['head']), (set(['head']), set(['child']), 1),
             ['head'], None, None),
            (set(['head', 'child']), (set(['head']), set([NULL_REVISION]), 2),
             ['head', 'child'], None, None),
            (set(['head', 'child', NULL_REVISION]), (set(['head']), set(), 3),
             ['head', 'child', NULL_REVISION], None, None),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)

    def test_breadth_first_get_result_starts_stops(self):
        graph = self.make_graph({
            'head':['child'],
            'child':[NULL_REVISION],
            'otherhead':['otherchild'],
            'otherchild':['excluded'],
            'excluded':[NULL_REVISION],
            NULL_REVISION:[]
            })
        search = graph._make_breadth_first_searcher([])
        # Starting with nothing and adding a search works:
        search.start_searching(['head'])
        # head has been seen:
        result = search.get_result()
        self.assertEqual((set(['head']), set(['child']), 1),
            result.get_recipe())
        self.assertEqual(set(['head']), result.get_keys())
        self.assertEqual(set(['head']), search.seen)
        # using next:
        expected = [
            # stop at child, and start a new search at otherhead:
            # - otherhead counts as seen immediately when start_searching is
            # called.
            (set(['head', 'child', 'otherhead']),
             (set(['head', 'otherhead']), set(['child', 'otherchild']), 2),
             ['head', 'otherhead'], ['otherhead'], ['child']),
            (set(['head', 'child', 'otherhead', 'otherchild']),
             (set(['head', 'otherhead']), set(['child', 'excluded']), 3),
             ['head', 'otherhead', 'otherchild'], None, None),
            # stop searching excluded now
            (set(['head', 'child', 'otherhead', 'otherchild', 'excluded']),
             (set(['head', 'otherhead']), set(['child', 'excluded']), 3),
             ['head', 'otherhead', 'otherchild'], None, ['excluded']),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher([])
        search.start_searching(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)

    def test_breadth_first_stop_searching_not_queried(self):
        # A client should be able to say 'stop node X' even if X has not been
        # returned to the client.
        graph = self.make_graph({
            'head':['child', 'ghost1'],
            'child':[NULL_REVISION],
            NULL_REVISION:[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        expected = [
            # NULL_REVISION and ghost1 have not been returned
            (set(['head']), (set(['head']), set(['child', 'ghost1']), 1),
             ['head'], None, [NULL_REVISION, 'ghost1']),
            # ghost1 has been returned, NULL_REVISION is to be returned in the
            # next iteration.
            (set(['head', 'child', 'ghost1']),
             (set(['head']), set(['ghost1', NULL_REVISION]), 2),
             ['head', 'child'], None, [NULL_REVISION, 'ghost1']),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)

    def test_breadth_first_get_result_ghosts_are_excluded(self):
        graph = self.make_graph({
            'head':['child', 'ghost'],
            'child':[NULL_REVISION],
            NULL_REVISION:[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        # using next:
        expected = [
            (set(['head']),
             (set(['head']), set(['ghost', 'child']), 1),
             ['head'], None, None),
            (set(['head', 'child', 'ghost']),
             (set(['head']), set([NULL_REVISION, 'ghost']), 2),
             ['head', 'child'], None, None),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)

    def test_breadth_first_get_result_starting_a_ghost_ghost_is_excluded(self):
        graph = self.make_graph({
            'head':['child'],
            'child':[NULL_REVISION],
            NULL_REVISION:[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        # using next:
        expected = [
            (set(['head', 'ghost']),
             (set(['head', 'ghost']), set(['child', 'ghost']), 1),
             ['head'], ['ghost'], None),
            (set(['head', 'child', 'ghost']),
             (set(['head', 'ghost']), set([NULL_REVISION, 'ghost']), 2),
             ['head', 'child'], None, None),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)

    def test_breadth_first_revision_count_includes_NULL_REVISION(self):
        graph = self.make_graph({
            'head':[NULL_REVISION],
            NULL_REVISION:[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        # using next:
        expected = [
            (set(['head']),
             (set(['head']), set([NULL_REVISION]), 1),
             ['head'], None, None),
            (set(['head', NULL_REVISION]),
             (set(['head']), set([]), 2),
             ['head', NULL_REVISION], None, None),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)

    def test_breadth_first_search_get_result_after_StopIteration(self):
        # StopIteration should not invalid anything..
        graph = self.make_graph({
            'head':[NULL_REVISION],
            NULL_REVISION:[],
            })
        search = graph._make_breadth_first_searcher(['head'])
        # using next:
        expected = [
            (set(['head']),
             (set(['head']), set([NULL_REVISION]), 1),
             ['head'], None, None),
            (set(['head', 'ghost', NULL_REVISION]),
             (set(['head', 'ghost']), set(['ghost']), 2),
             ['head', NULL_REVISION], ['ghost'], None),
            ]
        self.assertSeenAndResult(expected, search, search.next)
        self.assertRaises(StopIteration, search.next)
        self.assertEqual(set(['head', 'ghost', NULL_REVISION]), search.seen)
        result = search.get_result()
        self.assertEqual((set(['ghost', 'head']), set(['ghost']), 2),
            result.get_recipe())
        self.assertEqual(set(['head', NULL_REVISION]), result.get_keys())
        # using next_with_ghosts:
        search = graph._make_breadth_first_searcher(['head'])
        self.assertSeenAndResult(expected, search, search.next_with_ghosts)
        self.assertRaises(StopIteration, search.next)
        self.assertEqual(set(['head', 'ghost', NULL_REVISION]), search.seen)
        result = search.get_result()
        self.assertEqual((set(['ghost', 'head']), set(['ghost']), 2),
            result.get_recipe())
        self.assertEqual(set(['head', NULL_REVISION]), result.get_keys())


class TestFindUniqueAncestors(tests.TestCase):

    def make_graph(self, ancestors):
        return _mod_graph.Graph(_mod_graph.DictParentsProvider(ancestors))

    def make_breaking_graph(self, ancestors, break_on):
        """Make a Graph that raises an exception if we hit a node."""
        g = self.make_graph(ancestors)
        orig_parent_map = g.get_parent_map
        def get_parent_map(keys):
            bad_keys = set(keys).intersection(break_on)
            if bad_keys:
                self.fail('key(s) %s was accessed' % (sorted(bad_keys),))
            return orig_parent_map(keys)
        g.get_parent_map = get_parent_map
        return g

    def assertFindUniqueAncestors(self, graph, expected, node, common):
        actual = graph.find_unique_ancestors(node, common)
        self.assertEqual(expected, sorted(actual))

    def test_empty_set(self):
        graph = self.make_graph(ancestry_1)
        self.assertFindUniqueAncestors(graph, [], 'rev1', ['rev1'])
        self.assertFindUniqueAncestors(graph, [], 'rev2b', ['rev2b'])
        self.assertFindUniqueAncestors(graph, [], 'rev3', ['rev1', 'rev3'])

    def test_single_node(self):
        graph = self.make_graph(ancestry_1)
        self.assertFindUniqueAncestors(graph, ['rev2a'], 'rev2a', ['rev1'])
        self.assertFindUniqueAncestors(graph, ['rev2b'], 'rev2b', ['rev1'])
        self.assertFindUniqueAncestors(graph, ['rev3'], 'rev3', ['rev2a'])

    def test_minimal_ancestry(self):
        graph = self.make_breaking_graph(extended_history_shortcut,
                                         [NULL_REVISION, 'a', 'b'])
        self.assertFindUniqueAncestors(graph, ['e'], 'e', ['d'])

        graph = self.make_breaking_graph(extended_history_shortcut,
                                         ['b'])
        self.assertFindUniqueAncestors(graph, ['f'], 'f', ['a', 'd'])

        graph = self.make_breaking_graph(complex_shortcut,
                                         ['a', 'b'])
        self.assertFindUniqueAncestors(graph, ['h'], 'h', ['i'])
        self.assertFindUniqueAncestors(graph, ['e', 'g', 'i'], 'i', ['h'])
        self.assertFindUniqueAncestors(graph, ['h'], 'h', ['g'])
        self.assertFindUniqueAncestors(graph, ['h'], 'h', ['j'])

    def test_in_ancestry(self):
        graph = self.make_graph(ancestry_1)
        self.assertFindUniqueAncestors(graph, [], 'rev1', ['rev3'])
        self.assertFindUniqueAncestors(graph, [], 'rev2b', ['rev4'])

    def test_multiple_revisions(self):
        graph = self.make_graph(ancestry_1)
        self.assertFindUniqueAncestors(graph,
            ['rev4'], 'rev4', ['rev3', 'rev2b'])
        self.assertFindUniqueAncestors(graph,
            ['rev2a', 'rev3', 'rev4'], 'rev4', ['rev2b'])

    def test_complex_shortcut(self):
        graph = self.make_graph(complex_shortcut)
        self.assertFindUniqueAncestors(graph,
            ['h', 'n'], 'n', ['m'])
        self.assertFindUniqueAncestors(graph,
            ['e', 'i', 'm'], 'm', ['n'])

    def test_complex_shortcut2(self):
        graph = self.make_graph(complex_shortcut2)
        self.assertFindUniqueAncestors(graph,
            ['j', 'u'], 'u', ['t'])
        self.assertFindUniqueAncestors(graph,
            ['t'], 't', ['u'])

    def test_multiple_interesting_unique(self):
        graph = self.make_graph(multiple_interesting_unique)
        self.assertFindUniqueAncestors(graph,
            ['j', 'y'], 'y', ['z'])
        self.assertFindUniqueAncestors(graph,
            ['p', 'z'], 'z', ['y'])

    def test_racing_shortcuts(self):
        graph = self.make_graph(racing_shortcuts)
        self.assertFindUniqueAncestors(graph,
            ['p', 'q', 'z'], 'z', ['y'])
        self.assertFindUniqueAncestors(graph,
            ['h', 'i', 'j', 'y'], 'j', ['z'])


class TestCachingParentsProvider(tests.TestCase):

    def setUp(self):
        super(TestCachingParentsProvider, self).setUp()
        dict_pp = _mod_graph.DictParentsProvider({'a':('b',)})
        self.inst_pp = InstrumentedParentsProvider(dict_pp)
        self.caching_pp = _mod_graph.CachingParentsProvider(self.inst_pp)

    def test_get_parent_map(self):
        """Requesting the same revision should be returned from cache"""
        self.assertEqual({}, self.caching_pp._cache)
        self.assertEqual({'a':('b',)}, self.caching_pp.get_parent_map(['a']))
        self.assertEqual(['a'], self.inst_pp.calls)
        self.assertEqual({'a':('b',)}, self.caching_pp.get_parent_map(['a']))
        # No new call, as it should have been returned from the cache
        self.assertEqual(['a'], self.inst_pp.calls)
        self.assertEqual({'a':('b',)}, self.caching_pp._cache)

    def test_get_parent_map_not_present(self):
        """The cache should also track when a revision doesn't exist"""
        self.assertEqual({}, self.caching_pp.get_parent_map(['b']))
        self.assertEqual(['b'], self.inst_pp.calls)
        self.assertEqual({}, self.caching_pp.get_parent_map(['b']))
        # No new calls
        self.assertEqual(['b'], self.inst_pp.calls)
        self.assertEqual({'b':None}, self.caching_pp._cache)

    def test_get_parent_map_mixed(self):
        """Anything that can be returned from cache, should be"""
        self.assertEqual({}, self.caching_pp.get_parent_map(['b']))
        self.assertEqual(['b'], self.inst_pp.calls)
        self.assertEqual({'a':('b',)},
                         self.caching_pp.get_parent_map(['a', 'b']))
        self.assertEqual(['b', 'a'], self.inst_pp.calls)

    def test_get_parent_map_repeated(self):
        """Asking for the same parent 2x will only forward 1 request."""
        self.assertEqual({'a':('b',)},
                         self.caching_pp.get_parent_map(['b', 'a', 'b']))
        # Use sorted because we don't care about the order, just that each is
        # only present 1 time.
        self.assertEqual(['a', 'b'], sorted(self.inst_pp.calls))