1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
# Copyright (C) 2007 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
from bzrlib import (
errors,
graph as _mod_graph,
)
from bzrlib.revision import NULL_REVISION
from bzrlib.tests import TestCaseWithMemoryTransport
# Ancestry 1:
#
# NULL_REVISION
# |
# rev1
# /\
# rev2a rev2b
# | |
# rev3 /
# | /
# rev4
ancestry_1 = {'rev1': [NULL_REVISION], 'rev2a': ['rev1'], 'rev2b': ['rev1'],
'rev3': ['rev2a'], 'rev4': ['rev3', 'rev2b']}
# Ancestry 2:
#
# NULL_REVISION
# / \
# rev1a rev1b
# |
# rev2a
# |
# rev3a
# |
# rev4a
ancestry_2 = {'rev1a': [NULL_REVISION], 'rev2a': ['rev1a'],
'rev1b': [NULL_REVISION], 'rev3a': ['rev2a'], 'rev4a': ['rev3a']}
# Criss cross ancestry
#
# NULL_REVISION
# |
# rev1
# / \
# rev2a rev2b
# |\ /|
# | X |
# |/ \|
# rev3a rev3b
criss_cross = {'rev1': [NULL_REVISION], 'rev2a': ['rev1'], 'rev2b': ['rev1'],
'rev3a': ['rev2a', 'rev2b'], 'rev3b': ['rev2b', 'rev2a']}
# Criss-cross 2
#
# NULL_REVISION
# / \
# rev1a rev1b
# |\ /|
# | \ / |
# | X |
# | / \ |
# |/ \|
# rev2a rev2b
criss_cross2 = {'rev1a': [NULL_REVISION], 'rev1b': [NULL_REVISION],
'rev2a': ['rev1a', 'rev1b'], 'rev2b': ['rev1b', 'rev1a']}
# Mainline:
#
# NULL_REVISION
# |
# rev1
# / \
# | rev2b
# | /
# rev2a
mainline = {'rev1': [NULL_REVISION], 'rev2a': ['rev1', 'rev2b'],
'rev2b': ['rev1']}
# feature branch:
#
# NULL_REVISION
# |
# rev1
# |
# rev2b
# |
# rev3b
feature_branch = {'rev1': [NULL_REVISION],
'rev2b': ['rev1'], 'rev3b': ['rev2b']}
# History shortcut
# NULL_REVISION
# |
# rev1------
# / \ \
# rev2a rev2b rev2c
# | / \ /
# rev3a reveb
history_shortcut = {'rev1': [NULL_REVISION], 'rev2a': ['rev1'],
'rev2b': ['rev1'], 'rev2c': ['rev1'],
'rev3a': ['rev2a', 'rev2b'], 'rev3b': ['rev2b', 'rev2c']}
# NULL_REVISION
# |
# f
# |
# e
# / \
# b d
# | \ |
# a c
boundary = {'a': ['b'], 'c': ['b', 'd'], 'b':['e'], 'd':['e'], 'e': ['f'],
'f':[NULL_REVISION]}
class InstrumentedParentsProvider(object):
def __init__(self, parents_provider):
self.calls = []
self._real_parents_provider = parents_provider
def get_parents(self, nodes):
self.calls.extend(nodes)
return self._real_parents_provider.get_parents(nodes)
class DictParentsProvider(object):
def __init__(self, ancestry):
self.ancestry = ancestry
def __repr__(self):
return 'DictParentsProvider(%r)' % self.ancestry
def get_parents(self, revisions):
return [self.ancestry.get(r, None) for r in revisions]
class TestGraph(TestCaseWithMemoryTransport):
def make_graph(self, ancestors):
tree = self.prepare_memory_tree('.')
self.build_ancestry(tree, ancestors)
tree.unlock()
return tree.branch.repository.get_graph()
def prepare_memory_tree(self, location):
tree = self.make_branch_and_memory_tree(location)
tree.lock_write()
tree.add('.')
return tree
def build_ancestry(self, tree, ancestors):
"""Create an ancestry as specified by a graph dict
:param tree: A tree to use
:param ancestors: a dict of {node: [node_parent, ...]}
"""
pending = [NULL_REVISION]
descendants = {}
for descendant, parents in ancestors.iteritems():
for parent in parents:
descendants.setdefault(parent, []).append(descendant)
while len(pending) > 0:
cur_node = pending.pop()
for descendant in descendants.get(cur_node, []):
if tree.branch.repository.has_revision(descendant):
continue
parents = [p for p in ancestors[descendant] if p is not
NULL_REVISION]
if len([p for p in parents if not
tree.branch.repository.has_revision(p)]) > 0:
continue
tree.set_parent_ids(parents)
if len(parents) > 0:
left_parent = parents[0]
else:
left_parent = NULL_REVISION
tree.branch.set_last_revision_info(
len(tree.branch._lefthand_history(left_parent)),
left_parent)
tree.commit(descendant, rev_id=descendant)
pending.append(descendant)
def test_lca(self):
"""Test finding least common ancestor.
ancestry_1 should always have a single common ancestor
"""
graph = self.make_graph(ancestry_1)
self.assertRaises(errors.InvalidRevisionId, graph.find_lca, None)
self.assertEqual(set([NULL_REVISION]),
graph.find_lca(NULL_REVISION, NULL_REVISION))
self.assertEqual(set([NULL_REVISION]),
graph.find_lca(NULL_REVISION, 'rev1'))
self.assertEqual(set(['rev1']), graph.find_lca('rev1', 'rev1'))
self.assertEqual(set(['rev1']), graph.find_lca('rev2a', 'rev2b'))
def test_no_unique_lca(self):
"""Test error when one revision is not in the graph"""
graph = self.make_graph(ancestry_1)
self.assertRaises(errors.NoCommonAncestor, graph.find_unique_lca,
'rev1', '1rev')
def test_lca_criss_cross(self):
"""Test least-common-ancestor after a criss-cross merge."""
graph = self.make_graph(criss_cross)
self.assertEqual(set(['rev2a', 'rev2b']),
graph.find_lca('rev3a', 'rev3b'))
self.assertEqual(set(['rev2b']),
graph.find_lca('rev3a', 'rev3b', 'rev2b'))
def test_lca_shortcut(self):
"""Test least-common ancestor on this history shortcut"""
graph = self.make_graph(history_shortcut)
self.assertEqual(set(['rev2b']), graph.find_lca('rev3a', 'rev3b'))
def test_recursive_unique_lca(self):
"""Test finding a unique least common ancestor.
ancestry_1 should always have a single common ancestor
"""
graph = self.make_graph(ancestry_1)
self.assertEqual(NULL_REVISION,
graph.find_unique_lca(NULL_REVISION, NULL_REVISION))
self.assertEqual(NULL_REVISION,
graph.find_unique_lca(NULL_REVISION, 'rev1'))
self.assertEqual('rev1', graph.find_unique_lca('rev1', 'rev1'))
self.assertEqual('rev1', graph.find_unique_lca('rev2a', 'rev2b'))
def test_unique_lca_criss_cross(self):
"""Ensure we don't pick non-unique lcas in a criss-cross"""
graph = self.make_graph(criss_cross)
self.assertEqual('rev1', graph.find_unique_lca('rev3a', 'rev3b'))
def test_unique_lca_null_revision(self):
"""Ensure we pick NULL_REVISION when necessary"""
graph = self.make_graph(criss_cross2)
self.assertEqual('rev1b', graph.find_unique_lca('rev2a', 'rev1b'))
self.assertEqual(NULL_REVISION,
graph.find_unique_lca('rev2a', 'rev2b'))
def test_unique_lca_null_revision2(self):
"""Ensure we pick NULL_REVISION when necessary"""
graph = self.make_graph(ancestry_2)
self.assertEqual(NULL_REVISION,
graph.find_unique_lca('rev4a', 'rev1b'))
def test_common_ancestor_two_repos(self):
"""Ensure we do unique_lca using data from two repos"""
mainline_tree = self.prepare_memory_tree('mainline')
self.build_ancestry(mainline_tree, mainline)
mainline_tree.unlock()
# This is cheating, because the revisions in the graph are actually
# different revisions, despite having the same revision-id.
feature_tree = self.prepare_memory_tree('feature')
self.build_ancestry(feature_tree, feature_branch)
feature_tree.unlock()
graph = mainline_tree.branch.repository.get_graph(
feature_tree.branch.repository)
self.assertEqual('rev2b', graph.find_unique_lca('rev2a', 'rev3b'))
def test_graph_difference(self):
graph = self.make_graph(ancestry_1)
self.assertEqual((set(), set()), graph.find_difference('rev1', 'rev1'))
self.assertEqual((set(), set(['rev1'])),
graph.find_difference(NULL_REVISION, 'rev1'))
self.assertEqual((set(['rev1']), set()),
graph.find_difference('rev1', NULL_REVISION))
self.assertEqual((set(['rev2a', 'rev3']), set(['rev2b'])),
graph.find_difference('rev3', 'rev2b'))
self.assertEqual((set(['rev4', 'rev3', 'rev2a']), set()),
graph.find_difference('rev4', 'rev2b'))
def test_graph_difference_criss_cross(self):
graph = self.make_graph(criss_cross)
self.assertEqual((set(['rev3a']), set(['rev3b'])),
graph.find_difference('rev3a', 'rev3b'))
self.assertEqual((set([]), set(['rev3b', 'rev2b'])),
graph.find_difference('rev2a', 'rev3b'))
def test_stacked_parents_provider(self):
parents1 = DictParentsProvider({'rev2': ['rev3']})
parents2 = DictParentsProvider({'rev1': ['rev4']})
stacked = _mod_graph._StackedParentsProvider([parents1, parents2])
self.assertEqual([['rev4',], ['rev3']],
stacked.get_parents(['rev1', 'rev2']))
self.assertEqual([['rev3',], ['rev4']],
stacked.get_parents(['rev2', 'rev1']))
self.assertEqual([['rev3',], ['rev3']],
stacked.get_parents(['rev2', 'rev2']))
self.assertEqual([['rev4',], ['rev4']],
stacked.get_parents(['rev1', 'rev1']))
def test_iter_topo_order(self):
graph = self.make_graph(ancestry_1)
args = ['rev2a', 'rev3', 'rev1']
topo_args = list(graph.iter_topo_order(args))
self.assertEqual(set(args), set(topo_args))
self.assertTrue(topo_args.index('rev2a') > topo_args.index('rev1'))
self.assertTrue(topo_args.index('rev2a') < topo_args.index('rev3'))
def test_is_ancestor(self):
graph = self.make_graph(ancestry_1)
self.assertEqual(True, graph.is_ancestor('null:', 'null:'))
self.assertEqual(True, graph.is_ancestor('null:', 'rev1'))
self.assertEqual(False, graph.is_ancestor('rev1', 'null:'))
self.assertEqual(True, graph.is_ancestor('null:', 'rev4'))
self.assertEqual(False, graph.is_ancestor('rev4', 'null:'))
self.assertEqual(False, graph.is_ancestor('rev4', 'rev2b'))
self.assertEqual(True, graph.is_ancestor('rev2b', 'rev4'))
self.assertEqual(False, graph.is_ancestor('rev2b', 'rev3'))
self.assertEqual(False, graph.is_ancestor('rev3', 'rev2b'))
instrumented_provider = InstrumentedParentsProvider(graph)
instrumented_graph = _mod_graph.Graph(instrumented_provider)
instrumented_graph.is_ancestor('rev2a', 'rev2b')
self.assertTrue('null:' not in instrumented_provider.calls)
def test_is_ancestor_boundary(self):
"""Ensure that we avoid searching the whole graph.
This requires searching through b as a common ancestor, so we
can identify that e is common.
"""
graph = self.make_graph(boundary)
instrumented_provider = InstrumentedParentsProvider(graph)
graph = _mod_graph.Graph(instrumented_provider)
self.assertFalse(graph.is_ancestor('a', 'c'))
self.assertTrue('null:' not in instrumented_provider.calls)
def test_filter_candidate_lca(self):
"""Test filter_candidate_lca for a corner case
This tests the case where we encounter the end of iteration for 'e'
in the same pass as we discover that 'd' is an ancestor of 'e', and
therefore 'e' can't be an lca.
To compensate for different dict orderings on other Python
implementations, we mirror 'd' and 'e' with 'b' and 'a'.
"""
# This test is sensitive to the iteration order of dicts. It will
# pass incorrectly if 'e' and 'a' sort before 'c'
#
# NULL_REVISION
# / \
# a e
# | |
# b d
# \ /
# c
graph = self.make_graph({'c': ['b', 'd'], 'd': ['e'], 'b': ['a'],
'a': [NULL_REVISION], 'e': [NULL_REVISION]})
self.assertEqual(set(['c']), graph.heads(['a', 'c', 'e']))
def test_heads_null(self):
graph = self.make_graph(ancestry_1)
self.assertEqual(set(['null:']), graph.heads(['null:']))
self.assertEqual(set(['rev1']), graph.heads(['null:', 'rev1']))
self.assertEqual(set(['rev1']), graph.heads(['rev1', 'null:']))
self.assertEqual(set(['rev1']), graph.heads(set(['rev1', 'null:'])))
self.assertEqual(set(['rev1']), graph.heads(('rev1', 'null:')))
def test_heads_one(self):
# A single node will alwaya be a head
graph = self.make_graph(ancestry_1)
self.assertEqual(set(['null:']), graph.heads(['null:']))
self.assertEqual(set(['rev1']), graph.heads(['rev1']))
self.assertEqual(set(['rev2a']), graph.heads(['rev2a']))
self.assertEqual(set(['rev2b']), graph.heads(['rev2b']))
self.assertEqual(set(['rev3']), graph.heads(['rev3']))
self.assertEqual(set(['rev4']), graph.heads(['rev4']))
def test_heads_single(self):
graph = self.make_graph(ancestry_1)
self.assertEqual(set(['rev4']), graph.heads(['null:', 'rev4']))
self.assertEqual(set(['rev2a']), graph.heads(['rev1', 'rev2a']))
self.assertEqual(set(['rev2b']), graph.heads(['rev1', 'rev2b']))
self.assertEqual(set(['rev3']), graph.heads(['rev1', 'rev3']))
self.assertEqual(set(['rev4']), graph.heads(['rev1', 'rev4']))
self.assertEqual(set(['rev4']), graph.heads(['rev2a', 'rev4']))
self.assertEqual(set(['rev4']), graph.heads(['rev2b', 'rev4']))
self.assertEqual(set(['rev4']), graph.heads(['rev3', 'rev4']))
def test_heads_two_heads(self):
graph = self.make_graph(ancestry_1)
self.assertEqual(set(['rev2a', 'rev2b']),
graph.heads(['rev2a', 'rev2b']))
self.assertEqual(set(['rev3', 'rev2b']),
graph.heads(['rev3', 'rev2b']))
def test_heads_criss_cross(self):
graph = self.make_graph(criss_cross)
self.assertEqual(set(['rev2a']),
graph.heads(['rev2a', 'rev1']))
self.assertEqual(set(['rev2b']),
graph.heads(['rev2b', 'rev1']))
self.assertEqual(set(['rev3a']),
graph.heads(['rev3a', 'rev1']))
self.assertEqual(set(['rev3b']),
graph.heads(['rev3b', 'rev1']))
self.assertEqual(set(['rev2a', 'rev2b']),
graph.heads(['rev2a', 'rev2b']))
self.assertEqual(set(['rev3a']),
graph.heads(['rev3a', 'rev2a']))
self.assertEqual(set(['rev3a']),
graph.heads(['rev3a', 'rev2b']))
self.assertEqual(set(['rev3a']),
graph.heads(['rev3a', 'rev2a', 'rev2b']))
self.assertEqual(set(['rev3b']),
graph.heads(['rev3b', 'rev2a']))
self.assertEqual(set(['rev3b']),
graph.heads(['rev3b', 'rev2b']))
self.assertEqual(set(['rev3b']),
graph.heads(['rev3b', 'rev2a', 'rev2b']))
self.assertEqual(set(['rev3a', 'rev3b']),
graph.heads(['rev3a', 'rev3b']))
self.assertEqual(set(['rev3a', 'rev3b']),
graph.heads(['rev3a', 'rev3b', 'rev2a', 'rev2b']))
def test_heads_shortcut(self):
graph = self.make_graph(history_shortcut)
self.assertEqual(set(['rev2a', 'rev2b', 'rev2c']),
graph.heads(['rev2a', 'rev2b', 'rev2c']))
self.assertEqual(set(['rev3a', 'rev3b']),
graph.heads(['rev3a', 'rev3b']))
self.assertEqual(set(['rev3a', 'rev3b']),
graph.heads(['rev2a', 'rev3a', 'rev3b']))
self.assertEqual(set(['rev2a', 'rev3b']),
graph.heads(['rev2a', 'rev3b']))
self.assertEqual(set(['rev2c', 'rev3a']),
graph.heads(['rev2c', 'rev3a']))
def _run_heads_break_deeper(self, graph_dict, search):
"""Run heads on a graph-as-a-dict.
If the search asks for the parents of 'deeper' the test will fail.
"""
class stub(object):
pass
def get_parents(keys):
result = []
for key in keys:
if key == 'deeper':
import pdb;pdb.set_trace()
self.fail('key deeper was accessed')
result.append(graph_dict[key])
return result
an_obj = stub()
an_obj.get_parents = get_parents
graph = _mod_graph.Graph(an_obj)
return graph.heads(search)
def test_heads_limits_search(self):
# test that a heads query does not search all of history
graph_dict = {
'left':['common'],
'right':['common'],
'common':['deeper'],
}
self.assertEqual(set(['left', 'right']),
self._run_heads_break_deeper(graph_dict, ['left', 'right']))
def test_heads_limits_search_assymetric(self):
# test that a heads query does not search all of history
graph_dict = {
'left':['midleft'],
'midleft':['common'],
'right':['common'],
'common':['aftercommon'],
'aftercommon':['deeper'],
}
self.assertEqual(set(['left', 'right']),
self._run_heads_break_deeper(graph_dict, ['left', 'right']))
def test_heads_limits_search_common_search_must_continue(self):
# test that common nodes are still queried, preventing
# all-the-way-to-origin behaviour in the following graph:
graph_dict = {
'h1':['shortcut', 'common1'],
'h2':['common1'],
'shortcut':['common2'],
'common1':['common2'],
'common2':['deeper'],
}
self.assertEqual(set(['h1', 'h2']),
self._run_heads_break_deeper(graph_dict, ['h1', 'h2']))
|