1
# Copyright (C) 2008-2011 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
from bzrlib.lazy_import import lazy_import
23
lazy_import(globals(), """
42
from bzrlib.index import _OPTION_NODE_REFS, _OPTION_KEY_ELEMENTS, _OPTION_LEN
45
_BTSIGNATURE = "B+Tree Graph Index 2\n"
46
_OPTION_ROW_LENGTHS = "row_lengths="
47
_LEAF_FLAG = "type=leaf\n"
48
_INTERNAL_FLAG = "type=internal\n"
49
_INTERNAL_OFFSET = "offset="
51
_RESERVED_HEADER_BYTES = 120
54
# 4K per page: 4MB - 1000 entries
55
_NODE_CACHE_SIZE = 1000
58
class _BuilderRow(object):
59
"""The stored state accumulated while writing out a row in the index.
61
:ivar spool: A temporary file used to accumulate nodes for this row
63
:ivar nodes: The count of nodes emitted so far.
67
"""Create a _BuilderRow."""
69
self.spool = None# tempfile.TemporaryFile(prefix='bzr-index-row-')
72
def finish_node(self, pad=True):
73
byte_lines, _, padding = self.writer.finish()
75
self.spool = cStringIO.StringIO()
77
self.spool.write("\x00" * _RESERVED_HEADER_BYTES)
79
# We got bigger than 1 node, switch to a temp file
80
spool = tempfile.TemporaryFile(prefix='bzr-index-row-')
81
spool.write(self.spool.getvalue())
84
if not pad and padding:
86
skipped_bytes = padding
87
self.spool.writelines(byte_lines)
88
remainder = (self.spool.tell() + skipped_bytes) % _PAGE_SIZE
90
raise AssertionError("incorrect node length: %d, %d"
91
% (self.spool.tell(), remainder))
96
class _InternalBuilderRow(_BuilderRow):
97
"""The stored state accumulated while writing out internal rows."""
99
def finish_node(self, pad=True):
101
raise AssertionError("Must pad internal nodes only.")
102
_BuilderRow.finish_node(self)
105
class _LeafBuilderRow(_BuilderRow):
106
"""The stored state accumulated while writing out a leaf rows."""
109
class BTreeBuilder(index.GraphIndexBuilder):
110
"""A Builder for B+Tree based Graph indices.
112
The resulting graph has the structure:
114
_SIGNATURE OPTIONS NODES
115
_SIGNATURE := 'B+Tree Graph Index 1' NEWLINE
116
OPTIONS := REF_LISTS KEY_ELEMENTS LENGTH
117
REF_LISTS := 'node_ref_lists=' DIGITS NEWLINE
118
KEY_ELEMENTS := 'key_elements=' DIGITS NEWLINE
119
LENGTH := 'len=' DIGITS NEWLINE
120
ROW_LENGTHS := 'row_lengths' DIGITS (COMMA DIGITS)*
121
NODES := NODE_COMPRESSED*
122
NODE_COMPRESSED:= COMPRESSED_BYTES{4096}
123
NODE_RAW := INTERNAL | LEAF
124
INTERNAL := INTERNAL_FLAG POINTERS
125
LEAF := LEAF_FLAG ROWS
126
KEY_ELEMENT := Not-whitespace-utf8
127
KEY := KEY_ELEMENT (NULL KEY_ELEMENT)*
129
ROW := KEY NULL ABSENT? NULL REFERENCES NULL VALUE NEWLINE
131
REFERENCES := REFERENCE_LIST (TAB REFERENCE_LIST){node_ref_lists - 1}
132
REFERENCE_LIST := (REFERENCE (CR REFERENCE)*)?
134
VALUE := no-newline-no-null-bytes
137
def __init__(self, reference_lists=0, key_elements=1, spill_at=100000):
138
"""See GraphIndexBuilder.__init__.
140
:param spill_at: Optional parameter controlling the maximum number
141
of nodes that BTreeBuilder will hold in memory.
143
index.GraphIndexBuilder.__init__(self, reference_lists=reference_lists,
144
key_elements=key_elements)
145
self._spill_at = spill_at
146
self._backing_indices = []
147
# A map of {key: (node_refs, value)}
149
# Indicate it hasn't been built yet
150
self._nodes_by_key = None
151
self._optimize_for_size = False
153
def add_node(self, key, value, references=()):
154
"""Add a node to the index.
156
If adding the node causes the builder to reach its spill_at threshold,
157
disk spilling will be triggered.
159
:param key: The key. keys are non-empty tuples containing
160
as many whitespace-free utf8 bytestrings as the key length
161
defined for this index.
162
:param references: An iterable of iterables of keys. Each is a
163
reference to another key.
164
:param value: The value to associate with the key. It may be any
165
bytes as long as it does not contain \\0 or \\n.
167
# Ensure that 'key' is a StaticTuple
168
key = static_tuple.StaticTuple.from_sequence(key).intern()
169
# we don't care about absent_references
170
node_refs, _ = self._check_key_ref_value(key, references, value)
171
if key in self._nodes:
172
raise errors.BadIndexDuplicateKey(key, self)
173
self._nodes[key] = static_tuple.StaticTuple(node_refs, value)
174
if self._nodes_by_key is not None and self._key_length > 1:
175
self._update_nodes_by_key(key, value, node_refs)
176
if len(self._nodes) < self._spill_at:
178
self._spill_mem_keys_to_disk()
180
def _spill_mem_keys_to_disk(self):
181
"""Write the in memory keys down to disk to cap memory consumption.
183
If we already have some keys written to disk, we will combine them so
184
as to preserve the sorted order. The algorithm for combining uses
185
powers of two. So on the first spill, write all mem nodes into a
186
single index. On the second spill, combine the mem nodes with the nodes
187
on disk to create a 2x sized disk index and get rid of the first index.
188
On the third spill, create a single new disk index, which will contain
189
the mem nodes, and preserve the existing 2x sized index. On the fourth,
190
combine mem with the first and second indexes, creating a new one of
191
size 4x. On the fifth create a single new one, etc.
193
if self._combine_backing_indices:
194
(new_backing_file, size,
195
backing_pos) = self._spill_mem_keys_and_combine()
197
new_backing_file, size = self._spill_mem_keys_without_combining()
198
# Note: The transport here isn't strictly needed, because we will use
199
# direct access to the new_backing._file object
200
new_backing = BTreeGraphIndex(transport.get_transport_from_path('.'),
202
# GC will clean up the file
203
new_backing._file = new_backing_file
204
if self._combine_backing_indices:
205
if len(self._backing_indices) == backing_pos:
206
self._backing_indices.append(None)
207
self._backing_indices[backing_pos] = new_backing
208
for backing_pos in range(backing_pos):
209
self._backing_indices[backing_pos] = None
211
self._backing_indices.append(new_backing)
213
self._nodes_by_key = None
215
def _spill_mem_keys_without_combining(self):
216
return self._write_nodes(self._iter_mem_nodes(), allow_optimize=False)
218
def _spill_mem_keys_and_combine(self):
219
iterators_to_combine = [self._iter_mem_nodes()]
221
for pos, backing in enumerate(self._backing_indices):
225
iterators_to_combine.append(backing.iter_all_entries())
226
backing_pos = pos + 1
227
new_backing_file, size = \
228
self._write_nodes(self._iter_smallest(iterators_to_combine),
229
allow_optimize=False)
230
return new_backing_file, size, backing_pos
232
def add_nodes(self, nodes):
233
"""Add nodes to the index.
235
:param nodes: An iterable of (key, node_refs, value) entries to add.
237
if self.reference_lists:
238
for (key, value, node_refs) in nodes:
239
self.add_node(key, value, node_refs)
241
for (key, value) in nodes:
242
self.add_node(key, value)
244
def _iter_mem_nodes(self):
245
"""Iterate over the nodes held in memory."""
247
if self.reference_lists:
248
for key in sorted(nodes):
249
references, value = nodes[key]
250
yield self, key, value, references
252
for key in sorted(nodes):
253
references, value = nodes[key]
254
yield self, key, value
256
def _iter_smallest(self, iterators_to_combine):
257
if len(iterators_to_combine) == 1:
258
for value in iterators_to_combine[0]:
262
for iterator in iterators_to_combine:
264
current_values.append(iterator.next())
265
except StopIteration:
266
current_values.append(None)
269
# Decorate candidates with the value to allow 2.4's min to be used.
270
candidates = [(item[1][1], item) for item
271
in enumerate(current_values) if item[1] is not None]
272
if not len(candidates):
274
selected = min(candidates)
275
# undecorate back to (pos, node)
276
selected = selected[1]
277
if last == selected[1][1]:
278
raise errors.BadIndexDuplicateKey(last, self)
279
last = selected[1][1]
280
# Yield, with self as the index
281
yield (self,) + selected[1][1:]
284
current_values[pos] = iterators_to_combine[pos].next()
285
except StopIteration:
286
current_values[pos] = None
288
def _add_key(self, string_key, line, rows, allow_optimize=True):
289
"""Add a key to the current chunk.
291
:param string_key: The key to add.
292
:param line: The fully serialised key and value.
293
:param allow_optimize: If set to False, prevent setting the optimize
294
flag when writing out. This is used by the _spill_mem_keys_to_disk
298
if rows[-1].writer is None:
299
# opening a new leaf chunk;
301
for pos, internal_row in enumerate(rows[:-1]):
302
# flesh out any internal nodes that are needed to
303
# preserve the height of the tree
304
if internal_row.writer is None:
306
if internal_row.nodes == 0:
307
length -= _RESERVED_HEADER_BYTES # padded
309
optimize_for_size = self._optimize_for_size
311
optimize_for_size = False
312
internal_row.writer = chunk_writer.ChunkWriter(length, 0,
313
optimize_for_size=optimize_for_size)
314
internal_row.writer.write(_INTERNAL_FLAG)
315
internal_row.writer.write(_INTERNAL_OFFSET +
316
str(rows[pos + 1].nodes) + "\n")
319
if rows[-1].nodes == 0:
320
length -= _RESERVED_HEADER_BYTES # padded
321
rows[-1].writer = chunk_writer.ChunkWriter(length,
322
optimize_for_size=self._optimize_for_size)
323
rows[-1].writer.write(_LEAF_FLAG)
324
if rows[-1].writer.write(line):
325
# if we failed to write, despite having an empty page to write to,
326
# then line is too big. raising the error avoids infinite recursion
327
# searching for a suitably large page that will not be found.
329
raise errors.BadIndexKey(string_key)
330
# this key did not fit in the node:
331
rows[-1].finish_node()
332
key_line = string_key + "\n"
334
for row in reversed(rows[:-1]):
335
# Mark the start of the next node in the node above. If it
336
# doesn't fit then propagate upwards until we find one that
338
if row.writer.write(key_line):
341
# We've found a node that can handle the pointer.
344
# If we reached the current root without being able to mark the
345
# division point, then we need a new root:
348
if 'index' in debug.debug_flags:
349
trace.mutter('Inserting new global row.')
350
new_row = _InternalBuilderRow()
352
rows.insert(0, new_row)
353
# This will be padded, hence the -100
354
new_row.writer = chunk_writer.ChunkWriter(
355
_PAGE_SIZE - _RESERVED_HEADER_BYTES,
357
optimize_for_size=self._optimize_for_size)
358
new_row.writer.write(_INTERNAL_FLAG)
359
new_row.writer.write(_INTERNAL_OFFSET +
360
str(rows[1].nodes - 1) + "\n")
361
new_row.writer.write(key_line)
362
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
364
def _write_nodes(self, node_iterator, allow_optimize=True):
365
"""Write node_iterator out as a B+Tree.
367
:param node_iterator: An iterator of sorted nodes. Each node should
368
match the output given by iter_all_entries.
369
:param allow_optimize: If set to False, prevent setting the optimize
370
flag when writing out. This is used by the _spill_mem_keys_to_disk
372
:return: A file handle for a temporary file containing a B+Tree for
375
# The index rows - rows[0] is the root, rows[1] is the layer under it
378
# forward sorted by key. In future we may consider topological sorting,
379
# at the cost of table scans for direct lookup, or a second index for
382
# A stack with the number of nodes of each size. 0 is the root node
383
# and must always be 1 (if there are any nodes in the tree).
384
self.row_lengths = []
385
# Loop over all nodes adding them to the bottom row
386
# (rows[-1]). When we finish a chunk in a row,
387
# propagate the key that didn't fit (comes after the chunk) to the
388
# row above, transitively.
389
for node in node_iterator:
391
# First key triggers the first row
392
rows.append(_LeafBuilderRow())
394
string_key, line = _btree_serializer._flatten_node(node,
395
self.reference_lists)
396
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
397
for row in reversed(rows):
398
pad = (type(row) != _LeafBuilderRow)
399
row.finish_node(pad=pad)
400
lines = [_BTSIGNATURE]
401
lines.append(_OPTION_NODE_REFS + str(self.reference_lists) + '\n')
402
lines.append(_OPTION_KEY_ELEMENTS + str(self._key_length) + '\n')
403
lines.append(_OPTION_LEN + str(key_count) + '\n')
404
row_lengths = [row.nodes for row in rows]
405
lines.append(_OPTION_ROW_LENGTHS + ','.join(map(str, row_lengths)) + '\n')
406
if row_lengths and row_lengths[-1] > 1:
407
result = tempfile.NamedTemporaryFile(prefix='bzr-index-')
409
result = cStringIO.StringIO()
410
result.writelines(lines)
411
position = sum(map(len, lines))
413
if position > _RESERVED_HEADER_BYTES:
414
raise AssertionError("Could not fit the header in the"
415
" reserved space: %d > %d"
416
% (position, _RESERVED_HEADER_BYTES))
417
# write the rows out:
419
reserved = _RESERVED_HEADER_BYTES # reserved space for first node
422
# copy nodes to the finalised file.
423
# Special case the first node as it may be prefixed
424
node = row.spool.read(_PAGE_SIZE)
425
result.write(node[reserved:])
426
if len(node) == _PAGE_SIZE:
427
result.write("\x00" * (reserved - position))
428
position = 0 # Only the root row actually has an offset
429
copied_len = osutils.pumpfile(row.spool, result)
430
if copied_len != (row.nodes - 1) * _PAGE_SIZE:
431
if type(row) != _LeafBuilderRow:
432
raise AssertionError("Incorrect amount of data copied"
433
" expected: %d, got: %d"
434
% ((row.nodes - 1) * _PAGE_SIZE,
442
"""Finalise the index.
444
:return: A file handle for a temporary file containing the nodes added
447
return self._write_nodes(self.iter_all_entries())[0]
449
def iter_all_entries(self):
450
"""Iterate over all keys within the index
452
:return: An iterable of (index, key, value, reference_lists). There is
453
no defined order for the result iteration - it will be in the most
454
efficient order for the index (in this case dictionary hash order).
456
if 'evil' in debug.debug_flags:
457
trace.mutter_callsite(3,
458
"iter_all_entries scales with size of history.")
459
# Doing serial rather than ordered would be faster; but this shouldn't
460
# be getting called routinely anyway.
461
iterators = [self._iter_mem_nodes()]
462
for backing in self._backing_indices:
463
if backing is not None:
464
iterators.append(backing.iter_all_entries())
465
if len(iterators) == 1:
467
return self._iter_smallest(iterators)
469
def iter_entries(self, keys):
470
"""Iterate over keys within the index.
472
:param keys: An iterable providing the keys to be retrieved.
473
:return: An iterable of (index, key, value, reference_lists). There is no
474
defined order for the result iteration - it will be in the most
475
efficient order for the index (keys iteration order in this case).
478
# Note: We don't use keys.intersection() here. If you read the C api,
479
# set.intersection(other) special cases when other is a set and
480
# will iterate the smaller of the two and lookup in the other.
481
# It does *not* do this for any other type (even dict, unlike
482
# some other set functions.) Since we expect keys is generally <<
483
# self._nodes, it is faster to iterate over it in a list
486
local_keys = [key for key in keys if key in nodes]
487
if self.reference_lists:
488
for key in local_keys:
490
yield self, key, node[1], node[0]
492
for key in local_keys:
494
yield self, key, node[1]
495
# Find things that are in backing indices that have not been handled
497
if not self._backing_indices:
498
return # We won't find anything there either
499
# Remove all of the keys that we found locally
500
keys.difference_update(local_keys)
501
for backing in self._backing_indices:
506
for node in backing.iter_entries(keys):
508
yield (self,) + node[1:]
510
def iter_entries_prefix(self, keys):
511
"""Iterate over keys within the index using prefix matching.
513
Prefix matching is applied within the tuple of a key, not to within
514
the bytestring of each key element. e.g. if you have the keys ('foo',
515
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
516
only the former key is returned.
518
:param keys: An iterable providing the key prefixes to be retrieved.
519
Each key prefix takes the form of a tuple the length of a key, but
520
with the last N elements 'None' rather than a regular bytestring.
521
The first element cannot be 'None'.
522
:return: An iterable as per iter_all_entries, but restricted to the
523
keys with a matching prefix to those supplied. No additional keys
524
will be returned, and every match that is in the index will be
527
# XXX: To much duplication with the GraphIndex class; consider finding
528
# a good place to pull out the actual common logic.
532
for backing in self._backing_indices:
535
for node in backing.iter_entries_prefix(keys):
536
yield (self,) + node[1:]
537
if self._key_length == 1:
541
raise errors.BadIndexKey(key)
542
if len(key) != self._key_length:
543
raise errors.BadIndexKey(key)
545
node = self._nodes[key]
548
if self.reference_lists:
549
yield self, key, node[1], node[0]
551
yield self, key, node[1]
556
raise errors.BadIndexKey(key)
557
if len(key) != self._key_length:
558
raise errors.BadIndexKey(key)
559
# find what it refers to:
560
key_dict = self._get_nodes_by_key()
562
# find the subdict to return
564
while len(elements) and elements[0] is not None:
565
key_dict = key_dict[elements[0]]
568
# a non-existant lookup.
573
key_dict = dicts.pop(-1)
574
# can't be empty or would not exist
575
item, value = key_dict.iteritems().next()
576
if type(value) == dict:
578
dicts.extend(key_dict.itervalues())
581
for value in key_dict.itervalues():
582
yield (self, ) + tuple(value)
584
yield (self, ) + key_dict
586
def _get_nodes_by_key(self):
587
if self._nodes_by_key is None:
589
if self.reference_lists:
590
for key, (references, value) in self._nodes.iteritems():
591
key_dict = nodes_by_key
592
for subkey in key[:-1]:
593
key_dict = key_dict.setdefault(subkey, {})
594
key_dict[key[-1]] = key, value, references
596
for key, (references, value) in self._nodes.iteritems():
597
key_dict = nodes_by_key
598
for subkey in key[:-1]:
599
key_dict = key_dict.setdefault(subkey, {})
600
key_dict[key[-1]] = key, value
601
self._nodes_by_key = nodes_by_key
602
return self._nodes_by_key
605
"""Return an estimate of the number of keys in this index.
607
For InMemoryGraphIndex the estimate is exact.
609
return len(self._nodes) + sum(backing.key_count() for backing in
610
self._backing_indices if backing is not None)
613
"""In memory index's have no known corruption at the moment."""
616
class _LeafNode(dict):
617
"""A leaf node for a serialised B+Tree index."""
619
__slots__ = ('min_key', 'max_key', '_keys')
621
def __init__(self, bytes, key_length, ref_list_length):
622
"""Parse bytes to create a leaf node object."""
623
# splitlines mangles the \r delimiters.. don't use it.
624
key_list = _btree_serializer._parse_leaf_lines(bytes,
625
key_length, ref_list_length)
627
self.min_key = key_list[0][0]
628
self.max_key = key_list[-1][0]
630
self.min_key = self.max_key = None
631
super(_LeafNode, self).__init__(key_list)
632
self._keys = dict(self)
635
"""Return a sorted list of (key, (value, refs)) items"""
641
"""Return a sorted list of all keys."""
647
class _InternalNode(object):
648
"""An internal node for a serialised B+Tree index."""
650
__slots__ = ('keys', 'offset')
652
def __init__(self, bytes):
653
"""Parse bytes to create an internal node object."""
654
# splitlines mangles the \r delimiters.. don't use it.
655
self.keys = self._parse_lines(bytes.split('\n'))
657
def _parse_lines(self, lines):
659
self.offset = int(lines[1][7:])
660
as_st = static_tuple.StaticTuple.from_sequence
661
for line in lines[2:]:
664
nodes.append(as_st(map(intern, line.split('\0'))).intern())
668
class BTreeGraphIndex(object):
669
"""Access to nodes via the standard GraphIndex interface for B+Tree's.
671
Individual nodes are held in a LRU cache. This holds the root node in
672
memory except when very large walks are done.
675
def __init__(self, transport, name, size, unlimited_cache=False,
677
"""Create a B+Tree index object on the index name.
679
:param transport: The transport to read data for the index from.
680
:param name: The file name of the index on transport.
681
:param size: Optional size of the index in bytes. This allows
682
compatibility with the GraphIndex API, as well as ensuring that
683
the initial read (to read the root node header) can be done
684
without over-reading even on empty indices, and on small indices
685
allows single-IO to read the entire index.
686
:param unlimited_cache: If set to True, then instead of using an
687
LRUCache with size _NODE_CACHE_SIZE, we will use a dict and always
688
cache all leaf nodes.
689
:param offset: The start of the btree index data isn't byte 0 of the
690
file. Instead it starts at some point later.
692
self._transport = transport
696
self._recommended_pages = self._compute_recommended_pages()
697
self._root_node = None
698
self._base_offset = offset
699
self._leaf_factory = _LeafNode
700
# Default max size is 100,000 leave values
701
self._leaf_value_cache = None # lru_cache.LRUCache(100*1000)
703
self._leaf_node_cache = {}
704
self._internal_node_cache = {}
706
self._leaf_node_cache = lru_cache.LRUCache(_NODE_CACHE_SIZE)
707
# We use a FIFO here just to prevent possible blowout. However, a
708
# 300k record btree has only 3k leaf nodes, and only 20 internal
709
# nodes. A value of 100 scales to ~100*100*100 = 1M records.
710
self._internal_node_cache = fifo_cache.FIFOCache(100)
711
self._key_count = None
712
self._row_lengths = None
713
self._row_offsets = None # Start of each row, [-1] is the end
715
def __eq__(self, other):
716
"""Equal when self and other were created with the same parameters."""
718
type(self) == type(other) and
719
self._transport == other._transport and
720
self._name == other._name and
721
self._size == other._size)
723
def __ne__(self, other):
724
return not self.__eq__(other)
726
def _get_and_cache_nodes(self, nodes):
727
"""Read nodes and cache them in the lru.
729
The nodes list supplied is sorted and then read from disk, each node
730
being inserted it into the _node_cache.
732
Note: Asking for more nodes than the _node_cache can contain will
733
result in some of the results being immediately discarded, to prevent
734
this an assertion is raised if more nodes are asked for than are
737
:return: A dict of {node_pos: node}
740
start_of_leaves = None
741
for node_pos, node in self._read_nodes(sorted(nodes)):
742
if node_pos == 0: # Special case
743
self._root_node = node
745
if start_of_leaves is None:
746
start_of_leaves = self._row_offsets[-2]
747
if node_pos < start_of_leaves:
748
self._internal_node_cache[node_pos] = node
750
self._leaf_node_cache[node_pos] = node
751
found[node_pos] = node
754
def _compute_recommended_pages(self):
755
"""Convert transport's recommended_page_size into btree pages.
757
recommended_page_size is in bytes, we want to know how many _PAGE_SIZE
758
pages fit in that length.
760
recommended_read = self._transport.recommended_page_size()
761
recommended_pages = int(math.ceil(recommended_read /
763
return recommended_pages
765
def _compute_total_pages_in_index(self):
766
"""How many pages are in the index.
768
If we have read the header we will use the value stored there.
769
Otherwise it will be computed based on the length of the index.
771
if self._size is None:
772
raise AssertionError('_compute_total_pages_in_index should not be'
773
' called when self._size is None')
774
if self._root_node is not None:
775
# This is the number of pages as defined by the header
776
return self._row_offsets[-1]
777
# This is the number of pages as defined by the size of the index. They
778
# should be indentical.
779
total_pages = int(math.ceil(self._size / float(_PAGE_SIZE)))
782
def _expand_offsets(self, offsets):
783
"""Find extra pages to download.
785
The idea is that we always want to make big-enough requests (like 64kB
786
for http), so that we don't waste round trips. So given the entries
787
that we already have cached and the new pages being downloaded figure
788
out what other pages we might want to read.
790
See also doc/developers/btree_index_prefetch.txt for more details.
792
:param offsets: The offsets to be read
793
:return: A list of offsets to download
795
if 'index' in debug.debug_flags:
796
trace.mutter('expanding: %s\toffsets: %s', self._name, offsets)
798
if len(offsets) >= self._recommended_pages:
799
# Don't add more, we are already requesting more than enough
800
if 'index' in debug.debug_flags:
801
trace.mutter(' not expanding large request (%s >= %s)',
802
len(offsets), self._recommended_pages)
804
if self._size is None:
805
# Don't try anything, because we don't know where the file ends
806
if 'index' in debug.debug_flags:
807
trace.mutter(' not expanding without knowing index size')
809
total_pages = self._compute_total_pages_in_index()
810
cached_offsets = self._get_offsets_to_cached_pages()
811
# If reading recommended_pages would read the rest of the index, just
813
if total_pages - len(cached_offsets) <= self._recommended_pages:
814
# Read whatever is left
816
expanded = [x for x in xrange(total_pages)
817
if x not in cached_offsets]
819
expanded = range(total_pages)
820
if 'index' in debug.debug_flags:
821
trace.mutter(' reading all unread pages: %s', expanded)
824
if self._root_node is None:
825
# ATM on the first read of the root node of a large index, we don't
826
# bother pre-reading any other pages. This is because the
827
# likelyhood of actually reading interesting pages is very low.
828
# See doc/developers/btree_index_prefetch.txt for a discussion, and
829
# a possible implementation when we are guessing that the second
830
# layer index is small
831
final_offsets = offsets
833
tree_depth = len(self._row_lengths)
834
if len(cached_offsets) < tree_depth and len(offsets) == 1:
835
# We haven't read enough to justify expansion
836
# If we are only going to read the root node, and 1 leaf node,
837
# then it isn't worth expanding our request. Once we've read at
838
# least 2 nodes, then we are probably doing a search, and we
839
# start expanding our requests.
840
if 'index' in debug.debug_flags:
841
trace.mutter(' not expanding on first reads')
843
final_offsets = self._expand_to_neighbors(offsets, cached_offsets,
846
final_offsets = sorted(final_offsets)
847
if 'index' in debug.debug_flags:
848
trace.mutter('expanded: %s', final_offsets)
851
def _expand_to_neighbors(self, offsets, cached_offsets, total_pages):
852
"""Expand requests to neighbors until we have enough pages.
854
This is called from _expand_offsets after policy has determined that we
856
We only want to expand requests within a given layer. We cheat a little
857
bit and assume all requests will be in the same layer. This is true
858
given the current design, but if it changes this algorithm may perform
861
:param offsets: requested offsets
862
:param cached_offsets: offsets for pages we currently have cached
863
:return: A set() of offsets after expansion
865
final_offsets = set(offsets)
867
new_tips = set(final_offsets)
868
while len(final_offsets) < self._recommended_pages and new_tips:
872
first, end = self._find_layer_first_and_end(pos)
875
and previous not in cached_offsets
876
and previous not in final_offsets
877
and previous >= first):
878
next_tips.add(previous)
880
if (after < total_pages
881
and after not in cached_offsets
882
and after not in final_offsets
885
# This would keep us from going bigger than
886
# recommended_pages by only expanding the first offsets.
887
# However, if we are making a 'wide' request, it is
888
# reasonable to expand all points equally.
889
# if len(final_offsets) > recommended_pages:
891
final_offsets.update(next_tips)
895
def clear_cache(self):
896
"""Clear out any cached/memoized values.
898
This can be called at any time, but generally it is used when we have
899
extracted some information, but don't expect to be requesting any more
902
# Note that we don't touch self._root_node or self._internal_node_cache
903
# We don't expect either of those to be big, and it can save
904
# round-trips in the future. We may re-evaluate this if InternalNode
905
# memory starts to be an issue.
906
self._leaf_node_cache.clear()
908
def external_references(self, ref_list_num):
909
if self._root_node is None:
910
self._get_root_node()
911
if ref_list_num + 1 > self.node_ref_lists:
912
raise ValueError('No ref list %d, index has %d ref lists'
913
% (ref_list_num, self.node_ref_lists))
916
for node in self.iter_all_entries():
918
refs.update(node[3][ref_list_num])
921
def _find_layer_first_and_end(self, offset):
922
"""Find the start/stop nodes for the layer corresponding to offset.
924
:return: (first, end)
925
first is the first node in this layer
926
end is the first node of the next layer
929
for roffset in self._row_offsets:
936
def _get_offsets_to_cached_pages(self):
937
"""Determine what nodes we already have cached."""
938
cached_offsets = set(self._internal_node_cache.keys())
939
cached_offsets.update(self._leaf_node_cache.keys())
940
if self._root_node is not None:
941
cached_offsets.add(0)
942
return cached_offsets
944
def _get_root_node(self):
945
if self._root_node is None:
946
# We may not have a root node yet
947
self._get_internal_nodes([0])
948
return self._root_node
950
def _get_nodes(self, cache, node_indexes):
953
for idx in node_indexes:
954
if idx == 0 and self._root_node is not None:
955
found[0] = self._root_node
958
found[idx] = cache[idx]
963
needed = self._expand_offsets(needed)
964
found.update(self._get_and_cache_nodes(needed))
967
def _get_internal_nodes(self, node_indexes):
968
"""Get a node, from cache or disk.
970
After getting it, the node will be cached.
972
return self._get_nodes(self._internal_node_cache, node_indexes)
974
def _cache_leaf_values(self, nodes):
975
"""Cache directly from key => value, skipping the btree."""
976
if self._leaf_value_cache is not None:
977
for node in nodes.itervalues():
978
for key, value in node.all_items():
979
if key in self._leaf_value_cache:
980
# Don't add the rest of the keys, we've seen this node
983
self._leaf_value_cache[key] = value
985
def _get_leaf_nodes(self, node_indexes):
986
"""Get a bunch of nodes, from cache or disk."""
987
found = self._get_nodes(self._leaf_node_cache, node_indexes)
988
self._cache_leaf_values(found)
991
def iter_all_entries(self):
992
"""Iterate over all keys within the index.
994
:return: An iterable of (index, key, value) or (index, key, value, reference_lists).
995
The former tuple is used when there are no reference lists in the
996
index, making the API compatible with simple key:value index types.
997
There is no defined order for the result iteration - it will be in
998
the most efficient order for the index.
1000
if 'evil' in debug.debug_flags:
1001
trace.mutter_callsite(3,
1002
"iter_all_entries scales with size of history.")
1003
if not self.key_count():
1005
if self._row_offsets[-1] == 1:
1006
# There is only the root node, and we read that via key_count()
1007
if self.node_ref_lists:
1008
for key, (value, refs) in self._root_node.all_items():
1009
yield (self, key, value, refs)
1011
for key, (value, refs) in self._root_node.all_items():
1012
yield (self, key, value)
1014
start_of_leaves = self._row_offsets[-2]
1015
end_of_leaves = self._row_offsets[-1]
1016
needed_offsets = range(start_of_leaves, end_of_leaves)
1017
if needed_offsets == [0]:
1018
# Special case when we only have a root node, as we have already
1020
nodes = [(0, self._root_node)]
1022
nodes = self._read_nodes(needed_offsets)
1023
# We iterate strictly in-order so that we can use this function
1024
# for spilling index builds to disk.
1025
if self.node_ref_lists:
1026
for _, node in nodes:
1027
for key, (value, refs) in node.all_items():
1028
yield (self, key, value, refs)
1030
for _, node in nodes:
1031
for key, (value, refs) in node.all_items():
1032
yield (self, key, value)
1035
def _multi_bisect_right(in_keys, fixed_keys):
1036
"""Find the positions where each 'in_key' would fit in fixed_keys.
1038
This is equivalent to doing "bisect_right" on each in_key into
1041
:param in_keys: A sorted list of keys to match with fixed_keys
1042
:param fixed_keys: A sorted list of keys to match against
1043
:return: A list of (integer position, [key list]) tuples.
1048
# no pointers in the fixed_keys list, which means everything must
1050
return [(0, in_keys)]
1052
# TODO: Iterating both lists will generally take M + N steps
1053
# Bisecting each key will generally take M * log2 N steps.
1054
# If we had an efficient way to compare, we could pick the method
1055
# based on which has the fewer number of steps.
1056
# There is also the argument that bisect_right is a compiled
1057
# function, so there is even more to be gained.
1058
# iter_steps = len(in_keys) + len(fixed_keys)
1059
# bisect_steps = len(in_keys) * math.log(len(fixed_keys), 2)
1060
if len(in_keys) == 1: # Bisect will always be faster for M = 1
1061
return [(bisect.bisect_right(fixed_keys, in_keys[0]), in_keys)]
1062
# elif bisect_steps < iter_steps:
1064
# for key in in_keys:
1065
# offsets.setdefault(bisect_right(fixed_keys, key),
1067
# return [(o, offsets[o]) for o in sorted(offsets)]
1068
in_keys_iter = iter(in_keys)
1069
fixed_keys_iter = enumerate(fixed_keys)
1070
cur_in_key = in_keys_iter.next()
1071
cur_fixed_offset, cur_fixed_key = fixed_keys_iter.next()
1073
class InputDone(Exception): pass
1074
class FixedDone(Exception): pass
1079
# TODO: Another possibility is that rather than iterating on each side,
1080
# we could use a combination of bisecting and iterating. For
1081
# example, while cur_in_key < fixed_key, bisect to find its
1082
# point, then iterate all matching keys, then bisect (restricted
1083
# to only the remainder) for the next one, etc.
1086
if cur_in_key < cur_fixed_key:
1088
cur_out = (cur_fixed_offset, cur_keys)
1089
output.append(cur_out)
1090
while cur_in_key < cur_fixed_key:
1091
cur_keys.append(cur_in_key)
1093
cur_in_key = in_keys_iter.next()
1094
except StopIteration:
1096
# At this point cur_in_key must be >= cur_fixed_key
1097
# step the cur_fixed_key until we pass the cur key, or walk off
1099
while cur_in_key >= cur_fixed_key:
1101
cur_fixed_offset, cur_fixed_key = fixed_keys_iter.next()
1102
except StopIteration:
1105
# We consumed all of the input, nothing more to do
1108
# There was some input left, but we consumed all of fixed, so we
1109
# have to add one more for the tail
1110
cur_keys = [cur_in_key]
1111
cur_keys.extend(in_keys_iter)
1112
cur_out = (len(fixed_keys), cur_keys)
1113
output.append(cur_out)
1116
def _walk_through_internal_nodes(self, keys):
1117
"""Take the given set of keys, and find the corresponding LeafNodes.
1119
:param keys: An unsorted iterable of keys to search for
1120
:return: (nodes, index_and_keys)
1121
nodes is a dict mapping {index: LeafNode}
1122
keys_at_index is a list of tuples of [(index, [keys for Leaf])]
1124
# 6 seconds spent in miss_torture using the sorted() line.
1125
# Even with out of order disk IO it seems faster not to sort it when
1126
# large queries are being made.
1127
keys_at_index = [(0, sorted(keys))]
1129
for row_pos, next_row_start in enumerate(self._row_offsets[1:-1]):
1130
node_indexes = [idx for idx, s_keys in keys_at_index]
1131
nodes = self._get_internal_nodes(node_indexes)
1133
next_nodes_and_keys = []
1134
for node_index, sub_keys in keys_at_index:
1135
node = nodes[node_index]
1136
positions = self._multi_bisect_right(sub_keys, node.keys)
1137
node_offset = next_row_start + node.offset
1138
next_nodes_and_keys.extend([(node_offset + pos, s_keys)
1139
for pos, s_keys in positions])
1140
keys_at_index = next_nodes_and_keys
1141
# We should now be at the _LeafNodes
1142
node_indexes = [idx for idx, s_keys in keys_at_index]
1144
# TODO: We may *not* want to always read all the nodes in one
1145
# big go. Consider setting a max size on this.
1146
nodes = self._get_leaf_nodes(node_indexes)
1147
return nodes, keys_at_index
1149
def iter_entries(self, keys):
1150
"""Iterate over keys within the index.
1152
:param keys: An iterable providing the keys to be retrieved.
1153
:return: An iterable as per iter_all_entries, but restricted to the
1154
keys supplied. No additional keys will be returned, and every
1155
key supplied that is in the index will be returned.
1157
# 6 seconds spent in miss_torture using the sorted() line.
1158
# Even with out of order disk IO it seems faster not to sort it when
1159
# large queries are being made.
1160
# However, now that we are doing multi-way bisecting, we need the keys
1161
# in sorted order anyway. We could change the multi-way code to not
1162
# require sorted order. (For example, it bisects for the first node,
1163
# does an in-order search until a key comes before the current point,
1164
# which it then bisects for, etc.)
1165
keys = frozenset(keys)
1169
if not self.key_count():
1173
if self._leaf_value_cache is None:
1177
value = self._leaf_value_cache.get(key, None)
1178
if value is not None:
1179
# This key is known not to be here, skip it
1181
if self.node_ref_lists:
1182
yield (self, key, value, refs)
1184
yield (self, key, value)
1186
needed_keys.append(key)
1192
nodes, nodes_and_keys = self._walk_through_internal_nodes(needed_keys)
1193
for node_index, sub_keys in nodes_and_keys:
1196
node = nodes[node_index]
1197
for next_sub_key in sub_keys:
1198
if next_sub_key in node:
1199
value, refs = node[next_sub_key]
1200
if self.node_ref_lists:
1201
yield (self, next_sub_key, value, refs)
1203
yield (self, next_sub_key, value)
1205
def _find_ancestors(self, keys, ref_list_num, parent_map, missing_keys):
1206
"""Find the parent_map information for the set of keys.
1208
This populates the parent_map dict and missing_keys set based on the
1209
queried keys. It also can fill out an arbitrary number of parents that
1210
it finds while searching for the supplied keys.
1212
It is unlikely that you want to call this directly. See
1213
"CombinedGraphIndex.find_ancestry()" for a more appropriate API.
1215
:param keys: A keys whose ancestry we want to return
1216
Every key will either end up in 'parent_map' or 'missing_keys'.
1217
:param ref_list_num: This index in the ref_lists is the parents we
1219
:param parent_map: {key: parent_keys} for keys that are present in this
1220
index. This may contain more entries than were in 'keys', that are
1221
reachable ancestors of the keys requested.
1222
:param missing_keys: keys which are known to be missing in this index.
1223
This may include parents that were not directly requested, but we
1224
were able to determine that they are not present in this index.
1225
:return: search_keys parents that were found but not queried to know
1226
if they are missing or present. Callers can re-query this index for
1227
those keys, and they will be placed into parent_map or missing_keys
1229
if not self.key_count():
1230
# We use key_count() to trigger reading the root node and
1231
# determining info about this BTreeGraphIndex
1232
# If we don't have any keys, then everything is missing
1233
missing_keys.update(keys)
1235
if ref_list_num >= self.node_ref_lists:
1236
raise ValueError('No ref list %d, index has %d ref lists'
1237
% (ref_list_num, self.node_ref_lists))
1239
# The main trick we are trying to accomplish is that when we find a
1240
# key listing its parents, we expect that the parent key is also likely
1241
# to sit on the same page. Allowing us to expand parents quickly
1242
# without suffering the full stack of bisecting, etc.
1243
nodes, nodes_and_keys = self._walk_through_internal_nodes(keys)
1245
# These are parent keys which could not be immediately resolved on the
1246
# page where the child was present. Note that we may already be
1247
# searching for that key, and it may actually be present [or known
1248
# missing] on one of the other pages we are reading.
1250
# We could try searching for them in the immediate previous or next
1251
# page. If they occur "later" we could put them in a pending lookup
1252
# set, and then for each node we read thereafter we could check to
1253
# see if they are present.
1254
# However, we don't know the impact of keeping this list of things
1255
# that I'm going to search for every node I come across from here on
1257
# It doesn't handle the case when the parent key is missing on a
1258
# page that we *don't* read. So we already have to handle being
1259
# re-entrant for that.
1260
# Since most keys contain a date string, they are more likely to be
1261
# found earlier in the file than later, but we would know that right
1262
# away (key < min_key), and wouldn't keep searching it on every other
1263
# page that we read.
1264
# Mostly, it is an idea, one which should be benchmarked.
1265
parents_not_on_page = set()
1267
for node_index, sub_keys in nodes_and_keys:
1270
# sub_keys is all of the keys we are looking for that should exist
1271
# on this page, if they aren't here, then they won't be found
1272
node = nodes[node_index]
1273
parents_to_check = set()
1274
for next_sub_key in sub_keys:
1275
if next_sub_key not in node:
1276
# This one is just not present in the index at all
1277
missing_keys.add(next_sub_key)
1279
value, refs = node[next_sub_key]
1280
parent_keys = refs[ref_list_num]
1281
parent_map[next_sub_key] = parent_keys
1282
parents_to_check.update(parent_keys)
1283
# Don't look for things we've already found
1284
parents_to_check = parents_to_check.difference(parent_map)
1285
# this can be used to test the benefit of having the check loop
1287
# parents_not_on_page.update(parents_to_check)
1289
while parents_to_check:
1290
next_parents_to_check = set()
1291
for key in parents_to_check:
1293
value, refs = node[key]
1294
parent_keys = refs[ref_list_num]
1295
parent_map[key] = parent_keys
1296
next_parents_to_check.update(parent_keys)
1298
# This parent either is genuinely missing, or should be
1299
# found on another page. Perf test whether it is better
1300
# to check if this node should fit on this page or not.
1301
# in the 'everything-in-one-pack' scenario, this *not*
1302
# doing the check is 237ms vs 243ms.
1303
# So slightly better, but I assume the standard 'lots
1304
# of packs' is going to show a reasonable improvement
1305
# from the check, because it avoids 'going around
1306
# again' for everything that is in another index
1307
# parents_not_on_page.add(key)
1308
# Missing for some reason
1309
if key < node.min_key:
1310
# in the case of bzr.dev, 3.4k/5.3k misses are
1311
# 'earlier' misses (65%)
1312
parents_not_on_page.add(key)
1313
elif key > node.max_key:
1314
# This parent key would be present on a different
1316
parents_not_on_page.add(key)
1318
# assert key != node.min_key and key != node.max_key
1319
# If it was going to be present, it would be on
1320
# *this* page, so mark it missing.
1321
missing_keys.add(key)
1322
parents_to_check = next_parents_to_check.difference(parent_map)
1323
# Might want to do another .difference() from missing_keys
1324
# parents_not_on_page could have been found on a different page, or be
1325
# known to be missing. So cull out everything that has already been
1327
search_keys = parents_not_on_page.difference(
1328
parent_map).difference(missing_keys)
1331
def iter_entries_prefix(self, keys):
1332
"""Iterate over keys within the index using prefix matching.
1334
Prefix matching is applied within the tuple of a key, not to within
1335
the bytestring of each key element. e.g. if you have the keys ('foo',
1336
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
1337
only the former key is returned.
1339
WARNING: Note that this method currently causes a full index parse
1340
unconditionally (which is reasonably appropriate as it is a means for
1341
thunking many small indices into one larger one and still supplies
1342
iter_all_entries at the thunk layer).
1344
:param keys: An iterable providing the key prefixes to be retrieved.
1345
Each key prefix takes the form of a tuple the length of a key, but
1346
with the last N elements 'None' rather than a regular bytestring.
1347
The first element cannot be 'None'.
1348
:return: An iterable as per iter_all_entries, but restricted to the
1349
keys with a matching prefix to those supplied. No additional keys
1350
will be returned, and every match that is in the index will be
1353
keys = sorted(set(keys))
1356
# Load if needed to check key lengths
1357
if self._key_count is None:
1358
self._get_root_node()
1359
# TODO: only access nodes that can satisfy the prefixes we are looking
1360
# for. For now, to meet API usage (as this function is not used by
1361
# current bzrlib) just suck the entire index and iterate in memory.
1363
if self.node_ref_lists:
1364
if self._key_length == 1:
1365
for _1, key, value, refs in self.iter_all_entries():
1366
nodes[key] = value, refs
1369
for _1, key, value, refs in self.iter_all_entries():
1370
key_value = key, value, refs
1371
# For a key of (foo, bar, baz) create
1372
# _nodes_by_key[foo][bar][baz] = key_value
1373
key_dict = nodes_by_key
1374
for subkey in key[:-1]:
1375
key_dict = key_dict.setdefault(subkey, {})
1376
key_dict[key[-1]] = key_value
1378
if self._key_length == 1:
1379
for _1, key, value in self.iter_all_entries():
1383
for _1, key, value in self.iter_all_entries():
1384
key_value = key, value
1385
# For a key of (foo, bar, baz) create
1386
# _nodes_by_key[foo][bar][baz] = key_value
1387
key_dict = nodes_by_key
1388
for subkey in key[:-1]:
1389
key_dict = key_dict.setdefault(subkey, {})
1390
key_dict[key[-1]] = key_value
1391
if self._key_length == 1:
1395
raise errors.BadIndexKey(key)
1396
if len(key) != self._key_length:
1397
raise errors.BadIndexKey(key)
1399
if self.node_ref_lists:
1400
value, node_refs = nodes[key]
1401
yield self, key, value, node_refs
1403
yield self, key, nodes[key]
1410
raise errors.BadIndexKey(key)
1411
if len(key) != self._key_length:
1412
raise errors.BadIndexKey(key)
1413
# find what it refers to:
1414
key_dict = nodes_by_key
1415
elements = list(key)
1416
# find the subdict whose contents should be returned.
1418
while len(elements) and elements[0] is not None:
1419
key_dict = key_dict[elements[0]]
1422
# a non-existant lookup.
1427
key_dict = dicts.pop(-1)
1428
# can't be empty or would not exist
1429
item, value = key_dict.iteritems().next()
1430
if type(value) == dict:
1432
dicts.extend(key_dict.itervalues())
1435
for value in key_dict.itervalues():
1436
# each value is the key:value:node refs tuple
1438
yield (self, ) + value
1440
# the last thing looked up was a terminal element
1441
yield (self, ) + key_dict
1443
def key_count(self):
1444
"""Return an estimate of the number of keys in this index.
1446
For BTreeGraphIndex the estimate is exact as it is contained in the
1449
if self._key_count is None:
1450
self._get_root_node()
1451
return self._key_count
1453
def _compute_row_offsets(self):
1454
"""Fill out the _row_offsets attribute based on _row_lengths."""
1457
for row in self._row_lengths:
1458
offsets.append(row_offset)
1460
offsets.append(row_offset)
1461
self._row_offsets = offsets
1463
def _parse_header_from_bytes(self, bytes):
1464
"""Parse the header from a region of bytes.
1466
:param bytes: The data to parse.
1467
:return: An offset, data tuple such as readv yields, for the unparsed
1468
data. (which may be of length 0).
1470
signature = bytes[0:len(self._signature())]
1471
if not signature == self._signature():
1472
raise errors.BadIndexFormatSignature(self._name, BTreeGraphIndex)
1473
lines = bytes[len(self._signature()):].splitlines()
1474
options_line = lines[0]
1475
if not options_line.startswith(_OPTION_NODE_REFS):
1476
raise errors.BadIndexOptions(self)
1478
self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):])
1480
raise errors.BadIndexOptions(self)
1481
options_line = lines[1]
1482
if not options_line.startswith(_OPTION_KEY_ELEMENTS):
1483
raise errors.BadIndexOptions(self)
1485
self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):])
1487
raise errors.BadIndexOptions(self)
1488
options_line = lines[2]
1489
if not options_line.startswith(_OPTION_LEN):
1490
raise errors.BadIndexOptions(self)
1492
self._key_count = int(options_line[len(_OPTION_LEN):])
1494
raise errors.BadIndexOptions(self)
1495
options_line = lines[3]
1496
if not options_line.startswith(_OPTION_ROW_LENGTHS):
1497
raise errors.BadIndexOptions(self)
1499
self._row_lengths = map(int, [length for length in
1500
options_line[len(_OPTION_ROW_LENGTHS):].split(',')
1503
raise errors.BadIndexOptions(self)
1504
self._compute_row_offsets()
1506
# calculate the bytes we have processed
1507
header_end = (len(signature) + sum(map(len, lines[0:4])) + 4)
1508
return header_end, bytes[header_end:]
1510
def _read_nodes(self, nodes):
1511
"""Read some nodes from disk into the LRU cache.
1513
This performs a readv to get the node data into memory, and parses each
1514
node, then yields it to the caller. The nodes are requested in the
1515
supplied order. If possible doing sort() on the list before requesting
1516
a read may improve performance.
1518
:param nodes: The nodes to read. 0 - first node, 1 - second node etc.
1521
# may be the byte string of the whole file
1523
# list of (offset, length) regions of the file that should, evenually
1524
# be read in to data_ranges, either from 'bytes' or from the transport
1526
base_offset = self._base_offset
1528
offset = (index * _PAGE_SIZE)
1531
# Root node - special case
1533
size = min(_PAGE_SIZE, self._size)
1535
# The only case where we don't know the size, is for very
1536
# small indexes. So we read the whole thing
1537
bytes = self._transport.get_bytes(self._name)
1538
num_bytes = len(bytes)
1539
self._size = num_bytes - base_offset
1540
# the whole thing should be parsed out of 'bytes'
1541
ranges = [(start, min(_PAGE_SIZE, num_bytes - start))
1542
for start in xrange(base_offset, num_bytes, _PAGE_SIZE)]
1545
if offset > self._size:
1546
raise AssertionError('tried to read past the end'
1547
' of the file %s > %s'
1548
% (offset, self._size))
1549
size = min(size, self._size - offset)
1550
ranges.append((base_offset + offset, size))
1553
elif bytes is not None:
1554
# already have the whole file
1555
data_ranges = [(start, bytes[start:start+size])
1556
for start, size in ranges]
1557
elif self._file is None:
1558
data_ranges = self._transport.readv(self._name, ranges)
1561
for offset, size in ranges:
1562
self._file.seek(offset)
1563
data_ranges.append((offset, self._file.read(size)))
1564
for offset, data in data_ranges:
1565
offset -= base_offset
1567
# extract the header
1568
offset, data = self._parse_header_from_bytes(data)
1571
bytes = zlib.decompress(data)
1572
if bytes.startswith(_LEAF_FLAG):
1573
node = self._leaf_factory(bytes, self._key_length,
1574
self.node_ref_lists)
1575
elif bytes.startswith(_INTERNAL_FLAG):
1576
node = _InternalNode(bytes)
1578
raise AssertionError("Unknown node type for %r" % bytes)
1579
yield offset / _PAGE_SIZE, node
1581
def _signature(self):
1582
"""The file signature for this index type."""
1586
"""Validate that everything in the index can be accessed."""
1587
# just read and parse every node.
1588
self._get_root_node()
1589
if len(self._row_lengths) > 1:
1590
start_node = self._row_offsets[1]
1592
# We shouldn't be reading anything anyway
1594
node_end = self._row_offsets[-1]
1595
for node in self._read_nodes(range(start_node, node_end)):
1599
_gcchk_factory = _LeafNode
1602
from bzrlib import _btree_serializer_pyx as _btree_serializer
1603
_gcchk_factory = _btree_serializer._parse_into_chk
1604
except ImportError, e:
1605
osutils.failed_to_load_extension(e)
1606
from bzrlib import _btree_serializer_py as _btree_serializer