1
# Copyright (C) 2008 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17
"""Persistent maps from tuple_of_strings->string using CHK stores.
19
Overview and current status:
21
The CHKMap class implements a dict from tuple_of_strings->string by using a trie
22
with internal nodes of 8-bit fan out; The key tuples are mapped to strings by
23
joining them by \x00, and \x00 padding shorter keys out to the length of the
24
longest key. Leaf nodes are packed as densely as possible, and internal nodes
25
are all an additional 8-bits wide leading to a sparse upper tree.
27
Updates to a CHKMap are done preferentially via the apply_delta method, to
28
allow optimisation of the update operation; but individual map/unmap calls are
29
possible and supported. All changes via map/unmap are buffered in memory until
30
the _save method is called to force serialisation of the tree. apply_delta
31
performs a _save implicitly.
36
Densely packed upper nodes.
43
from bzrlib import lazy_import
44
lazy_import.lazy_import(globals(), """
45
from bzrlib import versionedfile
56
# If each line is 50 bytes, and you have 255 internal pages, with 255-way fan
57
# out, it takes 3.1MB to cache the layer.
58
_PAGE_CACHE_SIZE = 4*1024*1024
59
# We are caching bytes so len(value) is perfectly accurate
60
_page_cache = lru_cache.LRUSizeCache(_PAGE_CACHE_SIZE)
62
# If a ChildNode falls below this many bytes, we check for a remap
63
_INTERESTING_NEW_SIZE = 50
64
# If a ChildNode shrinks by more than this amount, we check for a remap
65
_INTERESTING_SHRINKAGE_LIMIT = 20
66
# If we delete more than this many nodes applying a delta, we check for a remap
67
_INTERESTING_DELETES_LIMIT = 5
70
def _search_key_plain(key):
71
"""Map the key tuple into a search string that just uses the key bytes."""
72
return '\x00'.join(key)
75
search_key_registry = registry.Registry()
76
search_key_registry.register('plain', _search_key_plain)
80
"""A persistent map from string to string backed by a CHK store."""
82
def __init__(self, store, root_key, search_key_func=None):
83
"""Create a CHKMap object.
85
:param store: The store the CHKMap is stored in.
86
:param root_key: The root key of the map. None to create an empty
88
:param search_key_func: A function mapping a key => bytes. These bytes
89
are then used by the internal nodes to split up leaf nodes into
93
if search_key_func is None:
94
search_key_func = _search_key_plain
95
self._search_key_func = search_key_func
97
self._root_node = LeafNode(search_key_func=search_key_func)
99
self._root_node = self._node_key(root_key)
101
def apply_delta(self, delta):
102
"""Apply a delta to the map.
104
:param delta: An iterable of old_key, new_key, new_value tuples.
105
If new_key is not None, then new_key->new_value is inserted
106
into the map; if old_key is not None, then the old mapping
107
of old_key is removed.
110
for old, new, value in delta:
111
if old is not None and old != new:
112
self.unmap(old, check_remap=False)
114
for old, new, value in delta:
117
if delete_count > _INTERESTING_DELETES_LIMIT:
118
trace.mutter("checking remap as %d deletions", delete_count)
122
def _ensure_root(self):
123
"""Ensure that the root node is an object not a key."""
124
if type(self._root_node) is tuple:
125
# Demand-load the root
126
self._root_node = self._get_node(self._root_node)
128
def _get_node(self, node):
131
Note that this does not update the _items dict in objects containing a
132
reference to this node. As such it does not prevent subsequent IO being
135
:param node: A tuple key or node object.
136
:return: A node object.
138
if type(node) is tuple:
139
bytes = self._read_bytes(node)
140
return _deserialise(bytes, node,
141
search_key_func=self._search_key_func)
145
def _read_bytes(self, key):
147
return _page_cache[key]
149
stream = self._store.get_record_stream([key], 'unordered', True)
150
bytes = stream.next().get_bytes_as('fulltext')
151
_page_cache[key] = bytes
154
def _dump_tree(self, include_keys=False):
155
"""Return the tree in a string representation."""
157
res = self._dump_tree_node(self._root_node, prefix='', indent='',
158
include_keys=include_keys)
159
res.append('') # Give a trailing '\n'
160
return '\n'.join(res)
162
def _dump_tree_node(self, node, prefix, indent, include_keys=True):
163
"""For this node and all children, generate a string representation."""
168
node_key = node.key()
169
if node_key is not None:
170
key_str = ' %s' % (node_key[0],)
173
result.append('%s%r %s%s' % (indent, prefix, node.__class__.__name__,
175
if type(node) is InternalNode:
176
# Trigger all child nodes to get loaded
177
list(node._iter_nodes(self._store))
178
for prefix, sub in sorted(node._items.iteritems()):
179
result.extend(self._dump_tree_node(sub, prefix, indent + ' ',
180
include_keys=include_keys))
182
for key, value in sorted(node._items.iteritems()):
183
# Don't use prefix nor indent here to line up when used in
184
# tests in conjunction with assertEqualDiff
185
result.append(' %r %r' % (key, value))
189
def from_dict(klass, store, initial_value, maximum_size=0, key_width=1,
190
search_key_func=None):
191
"""Create a CHKMap in store with initial_value as the content.
193
:param store: The store to record initial_value in, a VersionedFiles
194
object with 1-tuple keys supporting CHK key generation.
195
:param initial_value: A dict to store in store. Its keys and values
197
:param maximum_size: The maximum_size rule to apply to nodes. This
198
determines the size at which no new data is added to a single node.
199
:param key_width: The number of elements in each key_tuple being stored
201
:param search_key_func: A function mapping a key => bytes. These bytes
202
are then used by the internal nodes to split up leaf nodes into
204
:return: The root chk of the resulting CHKMap.
206
result = CHKMap(store, None, search_key_func=search_key_func)
207
result._root_node.set_maximum_size(maximum_size)
208
result._root_node._key_width = key_width
210
for key, value in initial_value.items():
211
delta.append((None, key, value))
212
return result.apply_delta(delta)
214
def iter_changes(self, basis):
215
"""Iterate over the changes between basis and self.
217
:return: An iterator of tuples: (key, old_value, new_value). Old_value
218
is None for keys only in self; new_value is None for keys only in
222
# Read both trees in lexographic, highest-first order.
223
# Any identical nodes we skip
224
# Any unique prefixes we output immediately.
225
# values in a leaf node are treated as single-value nodes in the tree
226
# which allows them to be not-special-cased. We know to output them
227
# because their value is a string, not a key(tuple) or node.
229
# corner cases to beware of when considering this function:
230
# *) common references are at different heights.
231
# consider two trees:
232
# {'a': LeafNode={'aaa':'foo', 'aab':'bar'}, 'b': LeafNode={'b'}}
233
# {'a': InternalNode={'aa':LeafNode={'aaa':'foo', 'aab':'bar'},
234
# 'ab':LeafNode={'ab':'bar'}}
235
# 'b': LeafNode={'b'}}
236
# the node with aaa/aab will only be encountered in the second tree
237
# after reading the 'a' subtree, but it is encountered in the first
238
# tree immediately. Variations on this may have read internal nodes
239
# like this. we want to cut the entire pending subtree when we
240
# realise we have a common node. For this we use a list of keys -
241
# the path to a node - and check the entire path is clean as we
243
if self._node_key(self._root_node) == self._node_key(basis._root_node):
247
excluded_keys = set()
248
self_node = self._root_node
249
basis_node = basis._root_node
250
# A heap, each element is prefix, node(tuple/NodeObject/string),
251
# key_path (a list of tuples, tail-sharing down the tree.)
254
def process_node(node, path, a_map, pending):
255
# take a node and expand it
256
node = a_map._get_node(node)
257
if type(node) == LeafNode:
258
path = (node._key, path)
259
for key, value in node._items.items():
260
# For a LeafNode, the key is a serialized_key, rather than
261
# a search_key, but the heap is using search_keys
262
search_key = node._search_key_func(key)
263
heapq.heappush(pending, (search_key, key, value, path))
265
# type(node) == InternalNode
266
path = (node._key, path)
267
for prefix, child in node._items.items():
268
heapq.heappush(pending, (prefix, None, child, path))
269
def process_common_internal_nodes(self_node, basis_node):
270
self_items = set(self_node._items.items())
271
basis_items = set(basis_node._items.items())
272
path = (self_node._key, None)
273
for prefix, child in self_items - basis_items:
274
heapq.heappush(self_pending, (prefix, None, child, path))
275
path = (basis_node._key, None)
276
for prefix, child in basis_items - self_items:
277
heapq.heappush(basis_pending, (prefix, None, child, path))
278
def process_common_leaf_nodes(self_node, basis_node):
279
self_items = set(self_node._items.items())
280
basis_items = set(basis_node._items.items())
281
path = (self_node._key, None)
282
for key, value in self_items - basis_items:
283
prefix = self._search_key_func(key)
284
heapq.heappush(self_pending, (prefix, key, value, path))
285
path = (basis_node._key, None)
286
for key, value in basis_items - self_items:
287
prefix = basis._search_key_func(key)
288
heapq.heappush(basis_pending, (prefix, key, value, path))
289
def process_common_prefix_nodes(self_node, self_path,
290
basis_node, basis_path):
291
# Would it be more efficient if we could request both at the same
293
self_node = self._get_node(self_node)
294
basis_node = basis._get_node(basis_node)
295
if (type(self_node) == InternalNode
296
and type(basis_node) == InternalNode):
297
# Matching internal nodes
298
process_common_internal_nodes(self_node, basis_node)
299
elif (type(self_node) == LeafNode
300
and type(basis_node) == LeafNode):
301
process_common_leaf_nodes(self_node, basis_node)
303
process_node(self_node, self_path, self, self_pending)
304
process_node(basis_node, basis_path, basis, basis_pending)
305
process_common_prefix_nodes(self_node, None, basis_node, None)
308
excluded_keys = set()
309
def check_excluded(key_path):
310
# Note that this is N^2, it depends on us trimming trees
311
# aggressively to not become slow.
312
# A better implementation would probably have a reverse map
313
# back to the children of a node, and jump straight to it when
314
# a common node is detected, the proceed to remove the already
315
# pending children. bzrlib.graph has a searcher module with a
317
while key_path is not None:
318
key, key_path = key_path
319
if key in excluded_keys:
324
while self_pending or basis_pending:
327
# self is exhausted: output remainder of basis
328
for prefix, key, node, path in basis_pending:
329
if check_excluded(path):
331
node = basis._get_node(node)
334
yield (key, node, None)
336
# subtree - fastpath the entire thing.
337
for key, value in node.iteritems(basis._store):
338
yield (key, value, None)
340
elif not basis_pending:
341
# basis is exhausted: output remainder of self.
342
for prefix, key, node, path in self_pending:
343
if check_excluded(path):
345
node = self._get_node(node)
348
yield (key, None, node)
350
# subtree - fastpath the entire thing.
351
for key, value in node.iteritems(self._store):
352
yield (key, None, value)
355
# XXX: future optimisation - yield the smaller items
356
# immediately rather than pushing everything on/off the
357
# heaps. Applies to both internal nodes and leafnodes.
358
if self_pending[0][0] < basis_pending[0][0]:
360
prefix, key, node, path = heapq.heappop(self_pending)
361
if check_excluded(path):
365
yield (key, None, node)
367
process_node(node, path, self, self_pending)
369
elif self_pending[0][0] > basis_pending[0][0]:
371
prefix, key, node, path = heapq.heappop(basis_pending)
372
if check_excluded(path):
376
yield (key, node, None)
378
process_node(node, path, basis, basis_pending)
381
# common prefix: possibly expand both
382
if self_pending[0][1] is None:
387
if basis_pending[0][1] is None:
392
if not read_self and not read_basis:
393
# compare a common value
394
self_details = heapq.heappop(self_pending)
395
basis_details = heapq.heappop(basis_pending)
396
if self_details[2] != basis_details[2]:
397
yield (self_details[1],
398
basis_details[2], self_details[2])
400
# At least one side wasn't a simple value
401
if (self._node_key(self_pending[0][2]) ==
402
self._node_key(basis_pending[0][2])):
403
# Identical pointers, skip (and don't bother adding to
404
# excluded, it won't turn up again.
405
heapq.heappop(self_pending)
406
heapq.heappop(basis_pending)
408
# Now we need to expand this node before we can continue
409
if read_self and read_basis:
410
# Both sides start with the same prefix, so process
412
self_prefix, _, self_node, self_path = heapq.heappop(
414
basis_prefix, _, basis_node, basis_path = heapq.heappop(
416
if self_prefix != basis_prefix:
417
raise AssertionError(
418
'%r != %r' % (self_prefix, basis_prefix))
419
process_common_prefix_nodes(
420
self_node, self_path,
421
basis_node, basis_path)
424
prefix, key, node, path = heapq.heappop(self_pending)
425
if check_excluded(path):
427
process_node(node, path, self, self_pending)
429
prefix, key, node, path = heapq.heappop(basis_pending)
430
if check_excluded(path):
432
process_node(node, path, basis, basis_pending)
435
def iteritems(self, key_filter=None):
436
"""Iterate over the entire CHKMap's contents."""
438
return self._root_node.iteritems(self._store, key_filter=key_filter)
441
"""Return the key for this map."""
442
if type(self._root_node) is tuple:
443
return self._root_node
445
return self._root_node._key
449
return len(self._root_node)
451
def map(self, key, value):
452
"""Map a key tuple to value."""
453
# Need a root object.
455
prefix, node_details = self._root_node.map(self._store, key, value)
456
if len(node_details) == 1:
457
self._root_node = node_details[0][1]
459
self._root_node = InternalNode(prefix,
460
search_key_func=self._search_key_func)
461
self._root_node.set_maximum_size(node_details[0][1].maximum_size)
462
self._root_node._key_width = node_details[0][1]._key_width
463
for split, node in node_details:
464
self._root_node.add_node(split, node)
466
def _node_key(self, node):
467
"""Get the key for a node whether it's a tuple or node."""
468
if type(node) is tuple:
473
def unmap(self, key, check_remap=True):
474
"""remove key from the map."""
476
if type(self._root_node) is InternalNode:
477
unmapped = self._root_node.unmap(self._store, key,
478
check_remap=check_remap)
480
unmapped = self._root_node.unmap(self._store, key)
481
self._root_node = unmapped
483
def _check_remap(self):
484
"""Check if nodes can be collapsed."""
486
if type(self._root_node) is InternalNode:
487
self._root_node._check_remap(self._store)
490
"""Save the map completely.
492
:return: The key of the root node.
494
if type(self._root_node) is tuple:
496
return self._root_node
497
keys = list(self._root_node.serialise(self._store))
502
"""Base class defining the protocol for CHK Map nodes.
504
:ivar _raw_size: The total size of the serialized key:value data, before
505
adding the header bytes, and without prefix compression.
508
def __init__(self, key_width=1):
511
:param key_width: The width of keys for this node.
514
# Current number of elements
516
self._maximum_size = 0
517
self._key_width = key_width
518
# current size in bytes
520
# The pointers/values this node has - meaning defined by child classes.
522
# The common search prefix
523
self._search_prefix = None
526
items_str = str(sorted(self._items))
527
if len(items_str) > 20:
528
items_str = items_str[:16] + '...]'
529
return '%s(key:%s len:%s size:%s max:%s prefix:%s items:%s)' % (
530
self.__class__.__name__, self._key, self._len, self._raw_size,
531
self._maximum_size, self._search_prefix, items_str)
540
def maximum_size(self):
541
"""What is the upper limit for adding references to a node."""
542
return self._maximum_size
544
def set_maximum_size(self, new_size):
545
"""Set the size threshold for nodes.
547
:param new_size: The size at which no data is added to a node. 0 for
550
self._maximum_size = new_size
553
def common_prefix(cls, prefix, key):
554
"""Given 2 strings, return the longest prefix common to both.
556
:param prefix: This has been the common prefix for other keys, so it is
557
more likely to be the common prefix in this case as well.
558
:param key: Another string to compare to
560
if key.startswith(prefix):
563
# Is there a better way to do this?
564
for pos, (left, right) in enumerate(zip(prefix, key)):
568
common = prefix[:pos+1]
572
def common_prefix_for_keys(cls, keys):
573
"""Given a list of keys, find their common prefix.
575
:param keys: An iterable of strings.
576
:return: The longest common prefix of all keys.
580
if common_prefix is None:
583
common_prefix = cls.common_prefix(common_prefix, key)
584
if not common_prefix:
585
# if common_prefix is the empty string, then we know it won't
591
# Singleton indicating we have not computed _search_prefix yet
594
class LeafNode(Node):
595
"""A node containing actual key:value pairs.
597
:ivar _items: A dict of key->value items. The key is in tuple form.
598
:ivar _size: The number of bytes that would be used by serializing all of
602
def __init__(self, search_key_func=None):
604
# All of the keys in this leaf node share this common prefix
605
self._common_serialised_prefix = None
606
self._serialise_key = '\x00'.join
607
if search_key_func is None:
608
self._search_key_func = _search_key_plain
610
self._search_key_func = search_key_func
613
items_str = str(sorted(self._items))
614
if len(items_str) > 20:
615
items_str = items_str[:16] + '...]'
617
'%s(key:%s len:%s size:%s max:%s prefix:%s keywidth:%s items:%s)' \
618
% (self.__class__.__name__, self._key, self._len, self._raw_size,
619
self._maximum_size, self._search_prefix, self._key_width, items_str)
621
def _current_size(self):
622
"""Answer the current serialised size of this node.
624
This differs from self._raw_size in that it includes the bytes used for
627
if self._common_serialised_prefix is None:
631
# We will store a single string with the common prefix
632
# And then that common prefix will not be stored in any of the
634
prefix_len = len(self._common_serialised_prefix)
635
bytes_for_items = (self._raw_size - (prefix_len * self._len))
636
return (9 # 'chkleaf:\n'
637
+ len(str(self._maximum_size)) + 1
638
+ len(str(self._key_width)) + 1
639
+ len(str(self._len)) + 1
644
def deserialise(klass, bytes, key, search_key_func=None):
645
"""Deserialise bytes, with key key, into a LeafNode.
647
:param bytes: The bytes of the node.
648
:param key: The key that the serialised node has.
650
return _deserialise_leaf_node(bytes, key,
651
search_key_func=search_key_func)
653
def iteritems(self, store, key_filter=None):
654
"""Iterate over items in the node.
656
:param key_filter: A filter to apply to the node. It should be a
657
list/set/dict or similar repeatedly iterable container.
659
if key_filter is not None:
660
# Adjust the filter - short elements go to a prefix filter. All
661
# other items are looked up directly.
662
# XXX: perhaps defaultdict? Profiling<rinse and repeat>
664
for key in key_filter:
665
if len(key) == self._key_width:
666
# This filter is meant to match exactly one key, yield it
669
yield key, self._items[key]
671
# This key is not present in this map, continue
674
# Short items, we need to match based on a prefix
675
length_filter = filters.setdefault(len(key), set())
676
length_filter.add(key)
678
filters = filters.items()
679
for item in self._items.iteritems():
680
for length, length_filter in filters:
681
if item[0][:length] in length_filter:
685
for item in self._items.iteritems():
688
def _key_value_len(self, key, value):
689
# TODO: Should probably be done without actually joining the key, but
690
# then that can be done via the C extension
691
return (len(self._serialise_key(key)) + 1
692
+ len(str(value.count('\n'))) + 1
695
def _search_key(self, key):
696
return self._search_key_func(key)
698
def _map_no_split(self, key, value):
699
"""Map a key to a value.
701
This assumes either the key does not already exist, or you have already
702
removed its size and length from self.
704
:return: True if adding this node should cause us to split.
706
self._items[key] = value
707
self._raw_size += self._key_value_len(key, value)
709
serialised_key = self._serialise_key(key)
710
if self._common_serialised_prefix is None:
711
self._common_serialised_prefix = serialised_key
713
self._common_serialised_prefix = self.common_prefix(
714
self._common_serialised_prefix, serialised_key)
715
search_key = self._search_key(key)
716
if self._search_prefix is _unknown:
717
self._compute_search_prefix()
718
if self._search_prefix is None:
719
self._search_prefix = search_key
721
self._search_prefix = self.common_prefix(
722
self._search_prefix, search_key)
724
and self._maximum_size
725
and self._current_size() > self._maximum_size):
726
# Check to see if all of the search_keys for this node are
727
# identical. We allow the node to grow under that circumstance
728
# (we could track this as common state, but it is infrequent)
729
if (search_key != self._search_prefix
730
or not self._are_search_keys_identical()):
734
def _split(self, store):
735
"""We have overflowed.
737
Split this node into multiple LeafNodes, return it up the stack so that
738
the next layer creates a new InternalNode and references the new nodes.
740
:return: (common_serialised_prefix, [(node_serialised_prefix, node)])
742
if self._search_prefix is _unknown:
743
raise AssertionError('Search prefix must be known')
744
common_prefix = self._search_prefix
745
split_at = len(common_prefix) + 1
747
for key, value in self._items.iteritems():
748
search_key = self._search_key(key)
749
prefix = search_key[:split_at]
750
# TODO: Generally only 1 key can be exactly the right length,
751
# which means we can only have 1 key in the node pointed
752
# at by the 'prefix\0' key. We might want to consider
753
# folding it into the containing InternalNode rather than
754
# having a fixed length-1 node.
755
# Note this is probably not true for hash keys, as they
756
# may get a '\00' node anywhere, but won't have keys of
758
if len(prefix) < split_at:
759
prefix += '\x00'*(split_at - len(prefix))
760
if prefix not in result:
761
node = LeafNode(search_key_func=self._search_key_func)
762
node.set_maximum_size(self._maximum_size)
763
node._key_width = self._key_width
764
result[prefix] = node
766
node = result[prefix]
767
node.map(store, key, value)
768
return common_prefix, result.items()
770
def map(self, store, key, value):
771
"""Map key to value."""
772
if key in self._items:
773
self._raw_size -= self._key_value_len(key, self._items[key])
776
if self._map_no_split(key, value):
777
return self._split(store)
779
if self._search_prefix is _unknown:
780
raise AssertionError('%r must be known' % self._search_prefix)
781
return self._search_prefix, [("", self)]
783
def serialise(self, store):
784
"""Serialise the LeafNode to store.
786
:param store: A VersionedFiles honouring the CHK extensions.
787
:return: An iterable of the keys inserted by this operation.
789
lines = ["chkleaf:\n"]
790
lines.append("%d\n" % self._maximum_size)
791
lines.append("%d\n" % self._key_width)
792
lines.append("%d\n" % self._len)
793
if self._common_serialised_prefix is None:
795
if len(self._items) != 0:
796
raise AssertionError('If _common_serialised_prefix is None'
797
' we should have no items')
799
lines.append('%s\n' % (self._common_serialised_prefix,))
800
prefix_len = len(self._common_serialised_prefix)
801
for key, value in sorted(self._items.items()):
802
# Always add a final newline
803
value_lines = osutils.chunks_to_lines([value + '\n'])
804
serialized = "%s\x00%s\n" % (self._serialise_key(key),
806
if not serialized.startswith(self._common_serialised_prefix):
807
raise AssertionError('We thought the common prefix was %r'
808
' but entry %r does not have it in common'
809
% (self._common_serialised_prefix, serialized))
810
lines.append(serialized[prefix_len:])
811
lines.extend(value_lines)
812
sha1, _, _ = store.add_lines((None,), (), lines)
813
self._key = ("sha1:" + sha1,)
814
bytes = ''.join(lines)
815
if len(bytes) != self._current_size():
816
raise AssertionError('Invalid _current_size')
817
_page_cache.add(self._key, bytes)
821
"""Return the references to other CHK's held by this node."""
824
def _compute_search_prefix(self):
825
"""Determine the common search prefix for all keys in this node.
827
:return: A bytestring of the longest search key prefix that is
828
unique within this node.
830
search_keys = [self._search_key_func(key) for key in self._items]
831
self._search_prefix = self.common_prefix_for_keys(search_keys)
832
return self._search_prefix
834
def _are_search_keys_identical(self):
835
"""Check to see if the search keys for all entries are the same.
837
When using a hash as the search_key it is possible for non-identical
838
keys to collide. If that happens enough, we may try overflow a
839
LeafNode, but as all are collisions, we must not split.
841
common_search_key = None
842
for key in self._items:
843
search_key = self._search_key(key)
844
if common_search_key is None:
845
common_search_key = search_key
846
elif search_key != common_search_key:
850
def _compute_serialised_prefix(self):
851
"""Determine the common prefix for serialised keys in this node.
853
:return: A bytestring of the longest serialised key prefix that is
854
unique within this node.
856
serialised_keys = [self._serialise_key(key) for key in self._items]
857
self._common_serialised_prefix = self.common_prefix_for_keys(
859
return self._common_serialised_prefix
861
def unmap(self, store, key):
862
"""Unmap key from the node."""
864
self._raw_size -= self._key_value_len(key, self._items[key])
866
trace.mutter("key %s not found in %r", key, self._items)
871
# Recompute from scratch
872
self._compute_search_prefix()
873
self._compute_serialised_prefix()
877
class InternalNode(Node):
878
"""A node that contains references to other nodes.
880
An InternalNode is responsible for mapping search key prefixes to child
883
:ivar _items: serialised_key => node dictionary. node may be a tuple,
884
LeafNode or InternalNode.
887
def __init__(self, prefix='', search_key_func=None):
889
# The size of an internalnode with default values and no children.
890
# How many octets key prefixes within this node are.
892
self._search_prefix = prefix
893
if search_key_func is None:
894
self._search_key_func = _search_key_plain
896
self._search_key_func = search_key_func
898
def add_node(self, prefix, node):
899
"""Add a child node with prefix prefix, and node node.
901
:param prefix: The search key prefix for node.
902
:param node: The node being added.
904
if self._search_prefix is None:
905
raise AssertionError("_search_prefix should not be None")
906
if not prefix.startswith(self._search_prefix):
907
raise AssertionError("prefixes mismatch: %s must start with %s"
908
% (prefix,self._search_prefix))
909
if len(prefix) != len(self._search_prefix) + 1:
910
raise AssertionError("prefix wrong length: len(%s) is not %d" %
911
(prefix, len(self._search_prefix) + 1))
912
self._len += len(node)
913
if not len(self._items):
914
self._node_width = len(prefix)
915
if self._node_width != len(self._search_prefix) + 1:
916
raise AssertionError("node width mismatch: %d is not %d" %
917
(self._node_width, len(self._search_prefix) + 1))
918
self._items[prefix] = node
921
def _current_size(self):
922
"""Answer the current serialised size of this node."""
923
return (self._raw_size + len(str(self._len)) + len(str(self._key_width)) +
924
len(str(self._maximum_size)))
927
def deserialise(klass, bytes, key, search_key_func=None):
928
"""Deserialise bytes to an InternalNode, with key key.
930
:param bytes: The bytes of the node.
931
:param key: The key that the serialised node has.
932
:return: An InternalNode instance.
934
return _deserialise_internal_node(bytes, key,
935
search_key_func=search_key_func)
937
def iteritems(self, store, key_filter=None):
938
for node, node_filter in self._iter_nodes(store, key_filter=key_filter):
939
for item in node.iteritems(store, key_filter=node_filter):
942
def _iter_nodes(self, store, key_filter=None, batch_size=None):
943
"""Iterate over node objects which match key_filter.
945
:param store: A store to use for accessing content.
946
:param key_filter: A key filter to filter nodes. Only nodes that might
947
contain a key in key_filter will be returned.
948
:param batch_size: If not None, then we will return the nodes that had
949
to be read using get_record_stream in batches, rather than reading
951
:return: An iterable of nodes. This function does not have to be fully
952
consumed. (There will be no pending I/O when items are being returned.)
954
# Map from chk key ('sha1:...',) to (prefix, key_filter)
955
# prefix is the key in self._items to use, key_filter is the key_filter
956
# entries that would match this node
959
if key_filter is None:
960
# yielding all nodes, yield whatever we have, and queue up a read
961
# for whatever we are missing
963
for prefix, node in self._items.iteritems():
964
if node.__class__ is tuple:
965
keys[node] = (prefix, None)
968
elif len(key_filter) == 1:
969
# Technically, this path could also be handled by the first check
970
# in 'self._node_width' in length_filters. However, we can handle
971
# this case without spending any time building up the
972
# prefix_to_keys, etc state.
974
# This is a bit ugly, but TIMEIT showed it to be by far the fastest
975
# 0.626us list(key_filter)[0]
976
# is a func() for list(), 2 mallocs, and a getitem
977
# 0.489us [k for k in key_filter][0]
978
# still has the mallocs, avoids the func() call
979
# 0.350us iter(key_filter).next()
980
# has a func() call, and mallocs an iterator
981
# 0.125us for key in key_filter: pass
982
# no func() overhead, might malloc an iterator
983
# 0.105us for key in key_filter: break
984
# no func() overhead, might malloc an iterator, probably
985
# avoids checking an 'else' clause as part of the for
986
for key in key_filter:
988
search_prefix = self._search_prefix_filter(key)
989
if len(search_prefix) == self._node_width:
990
# This item will match exactly, so just do a dict lookup, and
991
# see what we can return
994
node = self._items[search_prefix]
996
# A given key can only match 1 child node, if it isn't
997
# there, then we can just return nothing
999
if node.__class__ is tuple:
1000
keys[node] = (search_prefix, [key])
1002
# This is loaded, and the only thing that can match,
1007
# First, convert all keys into a list of search prefixes
1008
# Aggregate common prefixes, and track the keys they come from
1011
for key in key_filter:
1012
search_prefix = self._search_prefix_filter(key)
1013
length_filter = length_filters.setdefault(
1014
len(search_prefix), set())
1015
length_filter.add(search_prefix)
1016
prefix_to_keys.setdefault(search_prefix, []).append(key)
1018
if (self._node_width in length_filters
1019
and len(length_filters) == 1):
1020
# all of the search prefixes match exactly _node_width. This
1021
# means that everything is an exact match, and we can do a
1022
# lookup into self._items, rather than iterating over the items
1024
search_prefixes = length_filters[self._node_width]
1025
for search_prefix in search_prefixes:
1027
node = self._items[search_prefix]
1029
# We can ignore this one
1031
node_key_filter = prefix_to_keys[search_prefix]
1032
if node.__class__ is tuple:
1033
keys[node] = (search_prefix, node_key_filter)
1035
yield node, node_key_filter
1037
# The slow way. We walk every item in self._items, and check to
1038
# see if there are any matches
1039
length_filters = length_filters.items()
1040
for prefix, node in self._items.iteritems():
1041
node_key_filter = []
1042
for length, length_filter in length_filters:
1043
sub_prefix = prefix[:length]
1044
if sub_prefix in length_filter:
1045
node_key_filter.extend(prefix_to_keys[sub_prefix])
1046
if node_key_filter: # this key matched something, yield it
1047
if node.__class__ is tuple:
1048
keys[node] = (prefix, node_key_filter)
1050
yield node, node_key_filter
1052
# Look in the page cache for some more bytes
1056
bytes = _page_cache[key]
1060
node = _deserialise(bytes, key,
1061
search_key_func=self._search_key_func)
1062
prefix, node_key_filter = keys[key]
1063
self._items[prefix] = node
1065
yield node, node_key_filter
1066
for key in found_keys:
1069
# demand load some pages.
1070
if batch_size is None:
1071
# Read all the keys in
1072
batch_size = len(keys)
1073
key_order = list(keys)
1074
for batch_start in range(0, len(key_order), batch_size):
1075
batch = key_order[batch_start:batch_start + batch_size]
1076
# We have to fully consume the stream so there is no pending
1077
# I/O, so we buffer the nodes for now.
1078
stream = store.get_record_stream(batch, 'unordered', True)
1079
node_and_filters = []
1080
for record in stream:
1081
bytes = record.get_bytes_as('fulltext')
1082
node = _deserialise(bytes, record.key,
1083
search_key_func=self._search_key_func)
1084
prefix, node_key_filter = keys[record.key]
1085
node_and_filters.append((node, node_key_filter))
1086
self._items[prefix] = node
1087
_page_cache.add(record.key, bytes)
1088
for info in node_and_filters:
1091
def map(self, store, key, value):
1092
"""Map key to value."""
1093
if not len(self._items):
1094
raise AssertionError("can't map in an empty InternalNode.")
1095
search_key = self._search_key(key)
1096
if self._node_width != len(self._search_prefix) + 1:
1097
raise AssertionError("node width mismatch: %d is not %d" %
1098
(self._node_width, len(self._search_prefix) + 1))
1099
if not search_key.startswith(self._search_prefix):
1100
# This key doesn't fit in this index, so we need to split at the
1101
# point where it would fit, insert self into that internal node,
1102
# and then map this key into that node.
1103
new_prefix = self.common_prefix(self._search_prefix,
1105
new_parent = InternalNode(new_prefix,
1106
search_key_func=self._search_key_func)
1107
new_parent.set_maximum_size(self._maximum_size)
1108
new_parent._key_width = self._key_width
1109
new_parent.add_node(self._search_prefix[:len(new_prefix)+1],
1111
return new_parent.map(store, key, value)
1112
children = [node for node, _
1113
in self._iter_nodes(store, key_filter=[key])]
1118
child = self._new_child(search_key, LeafNode)
1119
old_len = len(child)
1120
if type(child) is LeafNode:
1121
old_size = child._current_size()
1124
prefix, node_details = child.map(store, key, value)
1125
if len(node_details) == 1:
1126
# child may have shrunk, or might be a new node
1127
child = node_details[0][1]
1128
self._len = self._len - old_len + len(child)
1129
self._items[search_key] = child
1132
if type(child) is LeafNode:
1133
if old_size is None:
1134
# The old node was an InternalNode which means it has now
1135
# collapsed, so we need to check if it will chain to a
1136
# collapse at this level.
1137
trace.mutter("checking remap as InternalNode -> LeafNode")
1138
new_node = self._check_remap(store)
1140
# If the LeafNode has shrunk in size, we may want to run
1141
# a remap check. Checking for a remap is expensive though
1142
# and the frequency of a successful remap is very low.
1143
# Shrinkage by small amounts is common, so we only do the
1144
# remap check if the new_size is low or the shrinkage
1145
# amount is over a configurable limit.
1146
new_size = child._current_size()
1147
shrinkage = old_size - new_size
1148
if (shrinkage > 0 and new_size < _INTERESTING_NEW_SIZE
1149
or shrinkage > _INTERESTING_SHRINKAGE_LIMIT):
1151
"checking remap as size shrunk by %d to be %d",
1152
shrinkage, new_size)
1153
new_node = self._check_remap(store)
1154
if new_node._search_prefix is None:
1155
raise AssertionError("_search_prefix should not be None")
1156
return new_node._search_prefix, [('', new_node)]
1157
# child has overflown - create a new intermediate node.
1158
# XXX: This is where we might want to try and expand our depth
1159
# to refer to more bytes of every child (which would give us
1160
# multiple pointers to child nodes, but less intermediate nodes)
1161
child = self._new_child(search_key, InternalNode)
1162
child._search_prefix = prefix
1163
for split, node in node_details:
1164
child.add_node(split, node)
1165
self._len = self._len - old_len + len(child)
1167
return self._search_prefix, [("", self)]
1169
def _new_child(self, search_key, klass):
1170
"""Create a new child node of type klass."""
1172
child.set_maximum_size(self._maximum_size)
1173
child._key_width = self._key_width
1174
child._search_key_func = self._search_key_func
1175
self._items[search_key] = child
1178
def serialise(self, store):
1179
"""Serialise the node to store.
1181
:param store: A VersionedFiles honouring the CHK extensions.
1182
:return: An iterable of the keys inserted by this operation.
1184
for node in self._items.itervalues():
1185
if type(node) is tuple:
1186
# Never deserialised.
1188
if node._key is not None:
1191
for key in node.serialise(store):
1193
lines = ["chknode:\n"]
1194
lines.append("%d\n" % self._maximum_size)
1195
lines.append("%d\n" % self._key_width)
1196
lines.append("%d\n" % self._len)
1197
if self._search_prefix is None:
1198
raise AssertionError("_search_prefix should not be None")
1199
lines.append('%s\n' % (self._search_prefix,))
1200
prefix_len = len(self._search_prefix)
1201
for prefix, node in sorted(self._items.items()):
1202
if type(node) is tuple:
1206
serialised = "%s\x00%s\n" % (prefix, key)
1207
if not serialised.startswith(self._search_prefix):
1208
raise AssertionError("prefixes mismatch: %s must start with %s"
1209
% (serialised, self._search_prefix))
1210
lines.append(serialised[prefix_len:])
1211
sha1, _, _ = store.add_lines((None,), (), lines)
1212
self._key = ("sha1:" + sha1,)
1213
_page_cache.add(self._key, ''.join(lines))
1216
def _search_key(self, key):
1217
"""Return the serialised key for key in this node."""
1218
# search keys are fixed width. All will be self._node_width wide, so we
1220
return (self._search_key_func(key) + '\x00'*self._node_width)[:self._node_width]
1222
def _search_prefix_filter(self, key):
1223
"""Serialise key for use as a prefix filter in iteritems."""
1224
return self._search_key_func(key)[:self._node_width]
1226
def _split(self, offset):
1227
"""Split this node into smaller nodes starting at offset.
1229
:param offset: The offset to start the new child nodes at.
1230
:return: An iterable of (prefix, node) tuples. prefix is a byte
1231
prefix for reaching node.
1233
if offset >= self._node_width:
1234
for node in self._items.values():
1235
for result in node._split(offset):
1238
for key, node in self._items.items():
1242
"""Return the references to other CHK's held by this node."""
1243
if self._key is None:
1244
raise AssertionError("unserialised nodes have no refs.")
1246
for value in self._items.itervalues():
1247
if type(value) is tuple:
1250
refs.append(value.key())
1253
def _compute_search_prefix(self, extra_key=None):
1254
"""Return the unique key prefix for this node.
1256
:return: A bytestring of the longest search key prefix that is
1257
unique within this node.
1259
self._search_prefix = self.common_prefix_for_keys(self._items)
1260
return self._search_prefix
1262
def unmap(self, store, key, check_remap=True):
1263
"""Remove key from this node and it's children."""
1264
if not len(self._items):
1265
raise AssertionError("can't unmap in an empty InternalNode.")
1266
children = [node for node, _
1267
in self._iter_nodes(store, key_filter=[key])]
1273
unmapped = child.unmap(store, key)
1275
search_key = self._search_key(key)
1276
if len(unmapped) == 0:
1277
# All child nodes are gone, remove the child:
1278
del self._items[search_key]
1281
# Stash the returned node
1282
self._items[search_key] = unmapped
1283
if len(self._items) == 1:
1284
# this node is no longer needed:
1285
return self._items.values()[0]
1286
if type(unmapped) is InternalNode:
1289
return self._check_remap(store)
1293
def _check_remap(self, store):
1294
"""Check if all keys contained by children fit in a single LeafNode.
1296
:param store: A store to use for reading more nodes
1297
:return: Either self, or a new LeafNode which should replace self.
1299
# Logic for how we determine when we need to rebuild
1300
# 1) Implicitly unmap() is removing a key which means that the child
1301
# nodes are going to be shrinking by some extent.
1302
# 2) If all children are LeafNodes, it is possible that they could be
1303
# combined into a single LeafNode, which can then completely replace
1304
# this internal node with a single LeafNode
1305
# 3) If *one* child is an InternalNode, we assume it has already done
1306
# all the work to determine that its children cannot collapse, and
1307
# we can then assume that those nodes *plus* the current nodes don't
1308
# have a chance of collapsing either.
1309
# So a very cheap check is to just say if 'unmapped' is an
1310
# InternalNode, we don't have to check further.
1312
# TODO: Another alternative is to check the total size of all known
1313
# LeafNodes. If there is some formula we can use to determine the
1314
# final size without actually having to read in any more
1315
# children, it would be nice to have. However, we have to be
1316
# careful with stuff like nodes that pull out the common prefix
1317
# of each key, as adding a new key can change the common prefix
1318
# and cause size changes greater than the length of one key.
1319
# So for now, we just add everything to a new Leaf until it
1320
# splits, as we know that will give the right answer
1321
new_leaf = LeafNode(search_key_func=self._search_key_func)
1322
new_leaf.set_maximum_size(self._maximum_size)
1323
new_leaf._key_width = self._key_width
1324
# A batch_size of 16 was chosen because:
1325
# a) In testing, a 4k page held 14 times. So if we have more than 16
1326
# leaf nodes we are unlikely to hold them in a single new leaf
1327
# node. This still allows for 1 round trip
1328
# b) With 16-way fan out, we can still do a single round trip
1329
# c) With 255-way fan out, we don't want to read all 255 and destroy
1330
# the page cache, just to determine that we really don't need it.
1331
for node, _ in self._iter_nodes(store, batch_size=16):
1332
if type(node) is InternalNode:
1333
# Without looking at any leaf nodes, we are sure
1335
for key, value in node._items.iteritems():
1336
if new_leaf._map_no_split(key, value):
1338
trace.mutter("remap generated a new LeafNode")
1342
def _deserialise(bytes, key, search_key_func):
1343
"""Helper for repositorydetails - convert bytes to a node."""
1344
if bytes.startswith("chkleaf:\n"):
1345
node = LeafNode.deserialise(bytes, key, search_key_func=search_key_func)
1346
elif bytes.startswith("chknode:\n"):
1347
node = InternalNode.deserialise(bytes, key,
1348
search_key_func=search_key_func)
1350
raise AssertionError("Unknown node type.")
1354
def _find_children_info(store, interesting_keys, uninteresting_keys, pb):
1355
"""Read the associated records, and determine what is interesting."""
1356
uninteresting_keys = set(uninteresting_keys)
1357
chks_to_read = uninteresting_keys.union(interesting_keys)
1358
next_uninteresting = set()
1359
next_interesting = set()
1360
uninteresting_items = set()
1361
interesting_items = set()
1362
interesting_to_yield = []
1363
for record in store.get_record_stream(chks_to_read, 'unordered', True):
1364
# records_read.add(record.key())
1367
bytes = record.get_bytes_as('fulltext')
1368
# We don't care about search_key_func for this code, because we only
1369
# care about external references.
1370
node = _deserialise(bytes, record.key, search_key_func=None)
1371
if record.key in uninteresting_keys:
1372
if type(node) is InternalNode:
1373
next_uninteresting.update(node.refs())
1375
# We know we are at a LeafNode, so we can pass None for the
1377
uninteresting_items.update(node.iteritems(None))
1379
interesting_to_yield.append(record.key)
1380
if type(node) is InternalNode:
1381
next_interesting.update(node.refs())
1383
interesting_items.update(node.iteritems(None))
1384
return (next_uninteresting, uninteresting_items,
1385
next_interesting, interesting_to_yield, interesting_items)
1388
def _find_all_uninteresting(store, interesting_root_keys,
1389
uninteresting_root_keys, pb):
1390
"""Determine the full set of uninteresting keys."""
1391
# What about duplicates between interesting_root_keys and
1392
# uninteresting_root_keys?
1393
if not uninteresting_root_keys:
1394
# Shortcut case. We know there is nothing uninteresting to filter out
1395
# So we just let the rest of the algorithm do the work
1396
# We know there is nothing uninteresting, and we didn't have to read
1397
# any interesting records yet.
1398
return (set(), set(), set(interesting_root_keys), [], set())
1399
all_uninteresting_chks = set(uninteresting_root_keys)
1400
all_uninteresting_items = set()
1402
# First step, find the direct children of both the interesting and
1404
(uninteresting_keys, uninteresting_items,
1405
interesting_keys, interesting_to_yield,
1406
interesting_items) = _find_children_info(store, interesting_root_keys,
1407
uninteresting_root_keys,
1409
all_uninteresting_chks.update(uninteresting_keys)
1410
all_uninteresting_items.update(uninteresting_items)
1411
del uninteresting_items
1412
# Note: Exact matches between interesting and uninteresting do not need
1413
# to be search further. Non-exact matches need to be searched in case
1414
# there is a future exact-match
1415
uninteresting_keys.difference_update(interesting_keys)
1417
# Second, find the full set of uninteresting bits reachable by the
1418
# uninteresting roots
1419
chks_to_read = uninteresting_keys
1422
for record in store.get_record_stream(chks_to_read, 'unordered', False):
1423
# TODO: Handle 'absent'
1426
bytes = record.get_bytes_as('fulltext')
1427
# We don't care about search_key_func for this code, because we
1428
# only care about external references.
1429
node = _deserialise(bytes, record.key, search_key_func=None)
1430
if type(node) is InternalNode:
1431
# uninteresting_prefix_chks.update(node._items.iteritems())
1432
chks = node._items.values()
1433
# TODO: We remove the entries that are already in
1434
# uninteresting_chks ?
1435
next_chks.update(chks)
1436
all_uninteresting_chks.update(chks)
1438
all_uninteresting_items.update(node._items.iteritems())
1439
chks_to_read = next_chks
1440
return (all_uninteresting_chks, all_uninteresting_items,
1441
interesting_keys, interesting_to_yield, interesting_items)
1444
def iter_interesting_nodes(store, interesting_root_keys,
1445
uninteresting_root_keys, pb=None):
1446
"""Given root keys, find interesting nodes.
1448
Evaluate nodes referenced by interesting_root_keys. Ones that are also
1449
referenced from uninteresting_root_keys are not considered interesting.
1451
:param interesting_root_keys: keys which should be part of the
1452
"interesting" nodes (which will be yielded)
1453
:param uninteresting_root_keys: keys which should be filtered out of the
1456
(interesting record, {interesting key:values})
1458
# TODO: consider that it may be more memory efficient to use the 20-byte
1459
# sha1 string, rather than tuples of hexidecimal sha1 strings.
1460
# TODO: Try to factor out a lot of the get_record_stream() calls into a
1461
# helper function similar to _read_bytes. This function should be
1462
# able to use nodes from the _page_cache as well as actually
1463
# requesting bytes from the store.
1465
(all_uninteresting_chks, all_uninteresting_items, interesting_keys,
1466
interesting_to_yield, interesting_items) = _find_all_uninteresting(store,
1467
interesting_root_keys, uninteresting_root_keys, pb)
1469
# Now that we know everything uninteresting, we can yield information from
1471
interesting_items.difference_update(all_uninteresting_items)
1472
interesting_to_yield = set(interesting_to_yield) - all_uninteresting_chks
1473
if interesting_items:
1474
yield None, interesting_items
1475
if interesting_to_yield:
1476
# We request these records again, rather than buffering the root
1477
# records, most likely they are still in the _group_cache anyway.
1478
for record in store.get_record_stream(interesting_to_yield,
1479
'unordered', False):
1481
all_uninteresting_chks.update(interesting_to_yield)
1482
interesting_keys.difference_update(all_uninteresting_chks)
1484
chks_to_read = interesting_keys
1488
for record in store.get_record_stream(chks_to_read, 'unordered', False):
1491
pb.update('find chk pages', counter)
1492
# TODO: Handle 'absent'?
1493
bytes = record.get_bytes_as('fulltext')
1494
# We don't care about search_key_func for this code, because we
1495
# only care about external references.
1496
node = _deserialise(bytes, record.key, search_key_func=None)
1497
if type(node) is InternalNode:
1498
# all_uninteresting_chks grows large, as it lists all nodes we
1499
# don't want to process (including already seen interesting
1501
# small.difference_update(large) scales O(large), but
1502
# small.difference(large) scales O(small).
1503
# Also, we know we just _deserialised this node, so we can
1504
# access the dict directly.
1505
chks = set(node._items.itervalues()).difference(
1506
all_uninteresting_chks)
1507
# Is set() and .difference_update better than:
1508
# chks = [chk for chk in node.refs()
1509
# if chk not in all_uninteresting_chks]
1510
next_chks.update(chks)
1511
# These are now uninteresting everywhere else
1512
all_uninteresting_chks.update(chks)
1513
interesting_items = []
1515
interesting_items = [item for item in node._items.iteritems()
1516
if item not in all_uninteresting_items]
1517
# TODO: Do we need to filter out items that we have already
1518
# seen on other pages? We don't really want to buffer the
1519
# whole thing, but it does mean that callers need to
1520
# understand they may get duplicate values.
1521
# all_uninteresting_items.update(interesting_items)
1522
yield record, interesting_items
1523
chks_to_read = next_chks
1527
from bzrlib._chk_map_pyx import (
1530
_deserialise_leaf_node,
1531
_deserialise_internal_node,
1534
from bzrlib._chk_map_py import (
1537
_deserialise_leaf_node,
1538
_deserialise_internal_node,
1540
search_key_registry.register('hash-16-way', _search_key_16)
1541
search_key_registry.register('hash-255-way', _search_key_255)