~bzr-pqm/bzr/bzr.dev

« back to all changes in this revision

Viewing changes to doc/developers/performance-use-case-analysis.txt

  • Committer: John Arbash Meinel
  • Author(s): Mark Hammond
  • Date: 2008-09-09 17:02:21 UTC
  • mto: This revision was merged to the branch mainline in revision 3697.
  • Revision ID: john@arbash-meinel.com-20080909170221-svim3jw2mrz0amp3
An updated transparent icon for bzr.

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
.. This document describes _how_ to do use case analyses and what we want
 
2
.. to get out of them; for the specific cases see the files referenced by
 
3
.. performance-roadmap.txt 
 
4
 
 
5
Analysing a specific use case
 
6
=============================
 
7
 
 
8
The analysis of a use case needs to provide as outputs:
 
9
 * The functional requirements that the use case has to satisfy.
 
10
 * The file level operations and access patterns that will give the best
 
11
   performance.
 
12
 * A low friction API which will allow the use case to be implemented.
 
13
 * The release of bzr (and thus the supported features) for which the analysis
 
14
   was performed. The feature set of bzr defines the access patterns and data
 
15
   required to implement any use case. So when we add features, their design
 
16
   changes the requirements for the parts of the system they alter, so we need
 
17
   to re-analyse use cases when bzr's feature set changes. If future plans are
 
18
   considered in the analysis with the intention of avoiding rework, these
 
19
   should also be mentioned.
 
20
 
 
21
Performing the analysis
 
22
=======================
 
23
 
 
24
The analysis needs to be able to define the characteristics of the
 
25
involved disk storage and APIs. That means we need to examine the data
 
26
required for the operation, in what order it is required, on both the
 
27
read and write sides, and how that needs to be presented to be
 
28
consistent with our layering.
 
29
 
 
30
As a quick example: 'annotation of a file requires the file id looked up
 
31
from the tree, the basis revision id from the tree, and then the text of
 
32
that fileid-revisionid pair along with the creating revision id
 
33
allocated to each line, and the dotted revision number of each of those
 
34
revision ids.' All three of our key domain objects are involved here,
 
35
but we haven't defined any characteristics of the api or disk facilities
 
36
yet. We could then do that by saying something like 'the file-id lookup
 
37
should degrade gracefully as trees become huge. The tree basis id should
 
38
be constant time. Retrieval of the annotated text should be roughly
 
39
constant for any text of the same size regardless of the number of
 
40
revisions contributing to its content. Mapping of the revision ids to
 
41
dotted revnos could be done as the text is retrieved, but its completely
 
42
fine to post-process the annotated text to obtain dotted-revnos.'
 
43
 
 
44
What factors should be considered?
 
45
==================================
 
46
 
 
47
Obviously, those that will make for an extremely fast system :). There
 
48
are many possible factors, but the ones I think are most interesting to
 
49
design with are:
 
50
 
 
51
- baseline overhead:
 
52
 
 
53
   - The time to get bzr ready to begin the use case.
 
54
 
 
55
- scaling: how does performance change when any of the follow aspects
 
56
  of the system are ratcheted massively up or down:
 
57
 
 
58
   - number of files/dirs/symlinks/subtrees in a tree (both working and 
 
59
     revision trees)
 
60
   - size of any particular file
 
61
   - number of elements within a single directory
 
62
   - length of symlinks
 
63
   - number of changes to any file over time
 
64
     (subordinately also the number of merges of the file)
 
65
   - number of commits in the ancestry of a branch
 
66
     (subordinately also the number of merges)
 
67
   - number of revisions in a repository
 
68
   - number of fileids in a repository
 
69
   - number of ghosts in a given graph (revision or per-file)
 
70
   - number of branches in a repository
 
71
   - number of concurrent readers for a tree/branch/repository
 
72
   - number of concurrent writers for objects that support that.
 
73
   - latency to perform file operations (e.g. slow disks, network file systems,
 
74
     our VFS layer and FTP/SFTP/etc)
 
75
   - bandwidth to the disk storage
 
76
   - latency to perform semantic operations (hpss specific)
 
77
   - bandwidth when performing semantic operations.
 
78
 
 
79
- locality of reference: If an operation requires data that is located
 
80
  within a small region at any point, we often get better performance 
 
81
  than with an implementation of the same operation that requires the
 
82
  same amount of data but with a lower locality of reference. Its 
 
83
  fairly tricky to add locality of reference after the fact, so I think
 
84
  its worth considering up front.
 
85
 
 
86
Using these factors, to the annotate example we can add that its
 
87
reasonable to do two 'semantic' round trips to the local tree, one to
 
88
the branch object, and two to the repository. In file-operation level
 
89
measurements, in an ideal world there would be no more than one round
 
90
trip for each semantic operation. What there must not be is one round
 
91
trip per revision involved in the revisionid->dotted number mapping, nor
 
92
per each revision id attributed to a line in the text. 
 
93
 
 
94
Not all the items mentioned above are created equal. The analysis should
 
95
include the parameters considered and the common case values for each - the
 
96
optimisation should be around the common cases not around the exceptions.
 
97
 
 
98
For instance, we have a smart server now; file level operations are relatively
 
99
low latency and we should use that as the common case. At this point we intend
 
100
to preserve the performance of the dumb protocol networking, but focus on
 
101
improving network performance via the smart server and thus escape the
 
102
file-level operation latency considerations.
 
103
 
 
104
Many performance problems only become visible when changing the scaling knobs
 
105
upwards to large trees. On small trees its our baseline performance that drives
 
106
incremental improvements; on large trees its the amount of processing per item
 
107
that drives performance. A significant goal therefore is to keep the amount of
 
108
data to be processed under control. Ideally we can scale in a sublinear fashion
 
109
for all operations, but we MUST NOT scale even linearly for operations that
 
110
invoke a latency multiplier. For example, reading a file on disk requires
 
111
finding the inode for the file, then the block with the data and returning the
 
112
contents. Due to directory grouping logic we pay a massive price to read files
 
113
if we do not group the reads of files within the same directory.