1
# Copyright (C) 2008 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
from bisect import bisect_right
37
from bzrlib.index import _OPTION_NODE_REFS, _OPTION_KEY_ELEMENTS, _OPTION_LEN
38
from bzrlib.transport import get_transport
41
_BTSIGNATURE = "B+Tree Graph Index 2\n"
42
_OPTION_ROW_LENGTHS = "row_lengths="
43
_LEAF_FLAG = "type=leaf\n"
44
_INTERNAL_FLAG = "type=internal\n"
45
_INTERNAL_OFFSET = "offset="
47
_RESERVED_HEADER_BYTES = 120
50
# 4K per page: 4MB - 1000 entries
51
_NODE_CACHE_SIZE = 1000
54
class _BuilderRow(object):
55
"""The stored state accumulated while writing out a row in the index.
57
:ivar spool: A temporary file used to accumulate nodes for this row
59
:ivar nodes: The count of nodes emitted so far.
63
"""Create a _BuilderRow."""
65
self.spool = None# tempfile.TemporaryFile(prefix='bzr-index-row-')
68
def finish_node(self, pad=True):
69
byte_lines, _, padding = self.writer.finish()
71
self.spool = cStringIO.StringIO()
73
self.spool.write("\x00" * _RESERVED_HEADER_BYTES)
75
# We got bigger than 1 node, switch to a temp file
76
spool = tempfile.TemporaryFile(prefix='bzr-index-row-')
77
spool.write(self.spool.getvalue())
80
if not pad and padding:
82
skipped_bytes = padding
83
self.spool.writelines(byte_lines)
84
remainder = (self.spool.tell() + skipped_bytes) % _PAGE_SIZE
86
raise AssertionError("incorrect node length: %d, %d"
87
% (self.spool.tell(), remainder))
92
class _InternalBuilderRow(_BuilderRow):
93
"""The stored state accumulated while writing out internal rows."""
95
def finish_node(self, pad=True):
97
raise AssertionError("Must pad internal nodes only.")
98
_BuilderRow.finish_node(self)
101
class _LeafBuilderRow(_BuilderRow):
102
"""The stored state accumulated while writing out a leaf rows."""
105
class BTreeBuilder(index.GraphIndexBuilder):
106
"""A Builder for B+Tree based Graph indices.
108
The resulting graph has the structure:
110
_SIGNATURE OPTIONS NODES
111
_SIGNATURE := 'B+Tree Graph Index 1' NEWLINE
112
OPTIONS := REF_LISTS KEY_ELEMENTS LENGTH
113
REF_LISTS := 'node_ref_lists=' DIGITS NEWLINE
114
KEY_ELEMENTS := 'key_elements=' DIGITS NEWLINE
115
LENGTH := 'len=' DIGITS NEWLINE
116
ROW_LENGTHS := 'row_lengths' DIGITS (COMMA DIGITS)*
117
NODES := NODE_COMPRESSED*
118
NODE_COMPRESSED:= COMPRESSED_BYTES{4096}
119
NODE_RAW := INTERNAL | LEAF
120
INTERNAL := INTERNAL_FLAG POINTERS
121
LEAF := LEAF_FLAG ROWS
122
KEY_ELEMENT := Not-whitespace-utf8
123
KEY := KEY_ELEMENT (NULL KEY_ELEMENT)*
125
ROW := KEY NULL ABSENT? NULL REFERENCES NULL VALUE NEWLINE
127
REFERENCES := REFERENCE_LIST (TAB REFERENCE_LIST){node_ref_lists - 1}
128
REFERENCE_LIST := (REFERENCE (CR REFERENCE)*)?
130
VALUE := no-newline-no-null-bytes
133
def __init__(self, reference_lists=0, key_elements=1, spill_at=100000):
134
"""See GraphIndexBuilder.__init__.
136
:param spill_at: Optional parameter controlling the maximum number
137
of nodes that BTreeBuilder will hold in memory.
139
index.GraphIndexBuilder.__init__(self, reference_lists=reference_lists,
140
key_elements=key_elements)
141
self._spill_at = spill_at
142
self._backing_indices = []
143
# A map of {key: (node_refs, value)}
145
# Indicate it hasn't been built yet
146
self._nodes_by_key = None
147
self._optimize_for_size = False
149
def add_node(self, key, value, references=()):
150
"""Add a node to the index.
152
If adding the node causes the builder to reach its spill_at threshold,
153
disk spilling will be triggered.
155
:param key: The key. keys are non-empty tuples containing
156
as many whitespace-free utf8 bytestrings as the key length
157
defined for this index.
158
:param references: An iterable of iterables of keys. Each is a
159
reference to another key.
160
:param value: The value to associate with the key. It may be any
161
bytes as long as it does not contain \0 or \n.
163
# Ensure that 'key' is a StaticTuple
164
key = static_tuple.StaticTuple.from_sequence(key).intern()
165
# we don't care about absent_references
166
node_refs, _ = self._check_key_ref_value(key, references, value)
167
if key in self._nodes:
168
raise errors.BadIndexDuplicateKey(key, self)
169
self._nodes[key] = static_tuple.StaticTuple(node_refs, value)
170
if self._nodes_by_key is not None and self._key_length > 1:
171
self._update_nodes_by_key(key, value, node_refs)
172
if len(self._nodes) < self._spill_at:
174
self._spill_mem_keys_to_disk()
176
def _spill_mem_keys_to_disk(self):
177
"""Write the in memory keys down to disk to cap memory consumption.
179
If we already have some keys written to disk, we will combine them so
180
as to preserve the sorted order. The algorithm for combining uses
181
powers of two. So on the first spill, write all mem nodes into a
182
single index. On the second spill, combine the mem nodes with the nodes
183
on disk to create a 2x sized disk index and get rid of the first index.
184
On the third spill, create a single new disk index, which will contain
185
the mem nodes, and preserve the existing 2x sized index. On the fourth,
186
combine mem with the first and second indexes, creating a new one of
187
size 4x. On the fifth create a single new one, etc.
189
if self._combine_backing_indices:
190
(new_backing_file, size,
191
backing_pos) = self._spill_mem_keys_and_combine()
193
new_backing_file, size = self._spill_mem_keys_without_combining()
194
# Note: The transport here isn't strictly needed, because we will use
195
# direct access to the new_backing._file object
196
new_backing = BTreeGraphIndex(get_transport('.'), '<temp>', size)
197
# GC will clean up the file
198
new_backing._file = new_backing_file
199
if self._combine_backing_indices:
200
if len(self._backing_indices) == backing_pos:
201
self._backing_indices.append(None)
202
self._backing_indices[backing_pos] = new_backing
203
for backing_pos in range(backing_pos):
204
self._backing_indices[backing_pos] = None
206
self._backing_indices.append(new_backing)
208
self._nodes_by_key = None
210
def _spill_mem_keys_without_combining(self):
211
return self._write_nodes(self._iter_mem_nodes(), allow_optimize=False)
213
def _spill_mem_keys_and_combine(self):
214
iterators_to_combine = [self._iter_mem_nodes()]
216
for pos, backing in enumerate(self._backing_indices):
220
iterators_to_combine.append(backing.iter_all_entries())
221
backing_pos = pos + 1
222
new_backing_file, size = \
223
self._write_nodes(self._iter_smallest(iterators_to_combine),
224
allow_optimize=False)
225
return new_backing_file, size, backing_pos
227
def add_nodes(self, nodes):
228
"""Add nodes to the index.
230
:param nodes: An iterable of (key, node_refs, value) entries to add.
232
if self.reference_lists:
233
for (key, value, node_refs) in nodes:
234
self.add_node(key, value, node_refs)
236
for (key, value) in nodes:
237
self.add_node(key, value)
239
def _iter_mem_nodes(self):
240
"""Iterate over the nodes held in memory."""
242
if self.reference_lists:
243
for key in sorted(nodes):
244
references, value = nodes[key]
245
yield self, key, value, references
247
for key in sorted(nodes):
248
references, value = nodes[key]
249
yield self, key, value
251
def _iter_smallest(self, iterators_to_combine):
252
if len(iterators_to_combine) == 1:
253
for value in iterators_to_combine[0]:
257
for iterator in iterators_to_combine:
259
current_values.append(iterator.next())
260
except StopIteration:
261
current_values.append(None)
264
# Decorate candidates with the value to allow 2.4's min to be used.
265
candidates = [(item[1][1], item) for item
266
in enumerate(current_values) if item[1] is not None]
267
if not len(candidates):
269
selected = min(candidates)
270
# undecorate back to (pos, node)
271
selected = selected[1]
272
if last == selected[1][1]:
273
raise errors.BadIndexDuplicateKey(last, self)
274
last = selected[1][1]
275
# Yield, with self as the index
276
yield (self,) + selected[1][1:]
279
current_values[pos] = iterators_to_combine[pos].next()
280
except StopIteration:
281
current_values[pos] = None
283
def _add_key(self, string_key, line, rows, allow_optimize=True):
284
"""Add a key to the current chunk.
286
:param string_key: The key to add.
287
:param line: The fully serialised key and value.
288
:param allow_optimize: If set to False, prevent setting the optimize
289
flag when writing out. This is used by the _spill_mem_keys_to_disk
292
if rows[-1].writer is None:
293
# opening a new leaf chunk;
294
for pos, internal_row in enumerate(rows[:-1]):
295
# flesh out any internal nodes that are needed to
296
# preserve the height of the tree
297
if internal_row.writer is None:
299
if internal_row.nodes == 0:
300
length -= _RESERVED_HEADER_BYTES # padded
302
optimize_for_size = self._optimize_for_size
304
optimize_for_size = False
305
internal_row.writer = chunk_writer.ChunkWriter(length, 0,
306
optimize_for_size=optimize_for_size)
307
internal_row.writer.write(_INTERNAL_FLAG)
308
internal_row.writer.write(_INTERNAL_OFFSET +
309
str(rows[pos + 1].nodes) + "\n")
312
if rows[-1].nodes == 0:
313
length -= _RESERVED_HEADER_BYTES # padded
314
rows[-1].writer = chunk_writer.ChunkWriter(length,
315
optimize_for_size=self._optimize_for_size)
316
rows[-1].writer.write(_LEAF_FLAG)
317
if rows[-1].writer.write(line):
318
# this key did not fit in the node:
319
rows[-1].finish_node()
320
key_line = string_key + "\n"
322
for row in reversed(rows[:-1]):
323
# Mark the start of the next node in the node above. If it
324
# doesn't fit then propagate upwards until we find one that
326
if row.writer.write(key_line):
329
# We've found a node that can handle the pointer.
332
# If we reached the current root without being able to mark the
333
# division point, then we need a new root:
336
if 'index' in debug.debug_flags:
337
trace.mutter('Inserting new global row.')
338
new_row = _InternalBuilderRow()
340
rows.insert(0, new_row)
341
# This will be padded, hence the -100
342
new_row.writer = chunk_writer.ChunkWriter(
343
_PAGE_SIZE - _RESERVED_HEADER_BYTES,
345
optimize_for_size=self._optimize_for_size)
346
new_row.writer.write(_INTERNAL_FLAG)
347
new_row.writer.write(_INTERNAL_OFFSET +
348
str(rows[1].nodes - 1) + "\n")
349
new_row.writer.write(key_line)
350
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
352
def _write_nodes(self, node_iterator, allow_optimize=True):
353
"""Write node_iterator out as a B+Tree.
355
:param node_iterator: An iterator of sorted nodes. Each node should
356
match the output given by iter_all_entries.
357
:param allow_optimize: If set to False, prevent setting the optimize
358
flag when writing out. This is used by the _spill_mem_keys_to_disk
360
:return: A file handle for a temporary file containing a B+Tree for
363
# The index rows - rows[0] is the root, rows[1] is the layer under it
366
# forward sorted by key. In future we may consider topological sorting,
367
# at the cost of table scans for direct lookup, or a second index for
370
# A stack with the number of nodes of each size. 0 is the root node
371
# and must always be 1 (if there are any nodes in the tree).
372
self.row_lengths = []
373
# Loop over all nodes adding them to the bottom row
374
# (rows[-1]). When we finish a chunk in a row,
375
# propagate the key that didn't fit (comes after the chunk) to the
376
# row above, transitively.
377
for node in node_iterator:
379
# First key triggers the first row
380
rows.append(_LeafBuilderRow())
382
string_key, line = _btree_serializer._flatten_node(node,
383
self.reference_lists)
384
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
385
for row in reversed(rows):
386
pad = (type(row) != _LeafBuilderRow)
387
row.finish_node(pad=pad)
388
lines = [_BTSIGNATURE]
389
lines.append(_OPTION_NODE_REFS + str(self.reference_lists) + '\n')
390
lines.append(_OPTION_KEY_ELEMENTS + str(self._key_length) + '\n')
391
lines.append(_OPTION_LEN + str(key_count) + '\n')
392
row_lengths = [row.nodes for row in rows]
393
lines.append(_OPTION_ROW_LENGTHS + ','.join(map(str, row_lengths)) + '\n')
394
if row_lengths and row_lengths[-1] > 1:
395
result = tempfile.NamedTemporaryFile(prefix='bzr-index-')
397
result = cStringIO.StringIO()
398
result.writelines(lines)
399
position = sum(map(len, lines))
401
if position > _RESERVED_HEADER_BYTES:
402
raise AssertionError("Could not fit the header in the"
403
" reserved space: %d > %d"
404
% (position, _RESERVED_HEADER_BYTES))
405
# write the rows out:
407
reserved = _RESERVED_HEADER_BYTES # reserved space for first node
410
# copy nodes to the finalised file.
411
# Special case the first node as it may be prefixed
412
node = row.spool.read(_PAGE_SIZE)
413
result.write(node[reserved:])
414
if len(node) == _PAGE_SIZE:
415
result.write("\x00" * (reserved - position))
416
position = 0 # Only the root row actually has an offset
417
copied_len = osutils.pumpfile(row.spool, result)
418
if copied_len != (row.nodes - 1) * _PAGE_SIZE:
419
if type(row) != _LeafBuilderRow:
420
raise AssertionError("Incorrect amount of data copied"
421
" expected: %d, got: %d"
422
% ((row.nodes - 1) * _PAGE_SIZE,
430
"""Finalise the index.
432
:return: A file handle for a temporary file containing the nodes added
435
return self._write_nodes(self.iter_all_entries())[0]
437
def iter_all_entries(self):
438
"""Iterate over all keys within the index
440
:return: An iterable of (index, key, value, reference_lists). There is
441
no defined order for the result iteration - it will be in the most
442
efficient order for the index (in this case dictionary hash order).
444
if 'evil' in debug.debug_flags:
445
trace.mutter_callsite(3,
446
"iter_all_entries scales with size of history.")
447
# Doing serial rather than ordered would be faster; but this shouldn't
448
# be getting called routinely anyway.
449
iterators = [self._iter_mem_nodes()]
450
for backing in self._backing_indices:
451
if backing is not None:
452
iterators.append(backing.iter_all_entries())
453
if len(iterators) == 1:
455
return self._iter_smallest(iterators)
457
def iter_entries(self, keys):
458
"""Iterate over keys within the index.
460
:param keys: An iterable providing the keys to be retrieved.
461
:return: An iterable of (index, key, value, reference_lists). There is no
462
defined order for the result iteration - it will be in the most
463
efficient order for the index (keys iteration order in this case).
466
# Note: We don't use keys.intersection() here. If you read the C api,
467
# set.intersection(other) special cases when other is a set and
468
# will iterate the smaller of the two and lookup in the other.
469
# It does *not* do this for any other type (even dict, unlike
470
# some other set functions.) Since we expect keys is generally <<
471
# self._nodes, it is faster to iterate over it in a list
474
local_keys = [key for key in keys if key in nodes]
475
if self.reference_lists:
476
for key in local_keys:
478
yield self, key, node[1], node[0]
480
for key in local_keys:
482
yield self, key, node[1]
483
# Find things that are in backing indices that have not been handled
485
if not self._backing_indices:
486
return # We won't find anything there either
487
# Remove all of the keys that we found locally
488
keys.difference_update(local_keys)
489
for backing in self._backing_indices:
494
for node in backing.iter_entries(keys):
496
yield (self,) + node[1:]
498
def iter_entries_prefix(self, keys):
499
"""Iterate over keys within the index using prefix matching.
501
Prefix matching is applied within the tuple of a key, not to within
502
the bytestring of each key element. e.g. if you have the keys ('foo',
503
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
504
only the former key is returned.
506
:param keys: An iterable providing the key prefixes to be retrieved.
507
Each key prefix takes the form of a tuple the length of a key, but
508
with the last N elements 'None' rather than a regular bytestring.
509
The first element cannot be 'None'.
510
:return: An iterable as per iter_all_entries, but restricted to the
511
keys with a matching prefix to those supplied. No additional keys
512
will be returned, and every match that is in the index will be
515
# XXX: To much duplication with the GraphIndex class; consider finding
516
# a good place to pull out the actual common logic.
520
for backing in self._backing_indices:
523
for node in backing.iter_entries_prefix(keys):
524
yield (self,) + node[1:]
525
if self._key_length == 1:
529
raise errors.BadIndexKey(key)
530
if len(key) != self._key_length:
531
raise errors.BadIndexKey(key)
533
node = self._nodes[key]
536
if self.reference_lists:
537
yield self, key, node[1], node[0]
539
yield self, key, node[1]
544
raise errors.BadIndexKey(key)
545
if len(key) != self._key_length:
546
raise errors.BadIndexKey(key)
547
# find what it refers to:
548
key_dict = self._get_nodes_by_key()
550
# find the subdict to return
552
while len(elements) and elements[0] is not None:
553
key_dict = key_dict[elements[0]]
556
# a non-existant lookup.
561
key_dict = dicts.pop(-1)
562
# can't be empty or would not exist
563
item, value = key_dict.iteritems().next()
564
if type(value) == dict:
566
dicts.extend(key_dict.itervalues())
569
for value in key_dict.itervalues():
570
yield (self, ) + value
572
yield (self, ) + key_dict
574
def _get_nodes_by_key(self):
575
if self._nodes_by_key is None:
577
if self.reference_lists:
578
for key, (references, value) in self._nodes.iteritems():
579
key_dict = nodes_by_key
580
for subkey in key[:-1]:
581
key_dict = key_dict.setdefault(subkey, {})
582
key_dict[key[-1]] = key, value, references
584
for key, (references, value) in self._nodes.iteritems():
585
key_dict = nodes_by_key
586
for subkey in key[:-1]:
587
key_dict = key_dict.setdefault(subkey, {})
588
key_dict[key[-1]] = key, value
589
self._nodes_by_key = nodes_by_key
590
return self._nodes_by_key
593
"""Return an estimate of the number of keys in this index.
595
For InMemoryGraphIndex the estimate is exact.
597
return len(self._nodes) + sum(backing.key_count() for backing in
598
self._backing_indices if backing is not None)
601
"""In memory index's have no known corruption at the moment."""
604
class _LeafNode(object):
605
"""A leaf node for a serialised B+Tree index."""
607
__slots__ = ('keys', 'min_key', 'max_key')
609
def __init__(self, bytes, key_length, ref_list_length):
610
"""Parse bytes to create a leaf node object."""
611
# splitlines mangles the \r delimiters.. don't use it.
612
key_list = _btree_serializer._parse_leaf_lines(bytes,
613
key_length, ref_list_length)
615
self.min_key = key_list[0][0]
616
self.max_key = key_list[-1][0]
618
self.min_key = self.max_key = None
619
self.keys = dict(key_list)
622
class _InternalNode(object):
623
"""An internal node for a serialised B+Tree index."""
625
__slots__ = ('keys', 'offset')
627
def __init__(self, bytes):
628
"""Parse bytes to create an internal node object."""
629
# splitlines mangles the \r delimiters.. don't use it.
630
self.keys = self._parse_lines(bytes.split('\n'))
632
def _parse_lines(self, lines):
634
self.offset = int(lines[1][7:])
635
as_st = static_tuple.StaticTuple.from_sequence
636
for line in lines[2:]:
639
nodes.append(as_st(map(intern, line.split('\0'))).intern())
643
class BTreeGraphIndex(object):
644
"""Access to nodes via the standard GraphIndex interface for B+Tree's.
646
Individual nodes are held in a LRU cache. This holds the root node in
647
memory except when very large walks are done.
650
def __init__(self, transport, name, size, unlimited_cache=False):
651
"""Create a B+Tree index object on the index name.
653
:param transport: The transport to read data for the index from.
654
:param name: The file name of the index on transport.
655
:param size: Optional size of the index in bytes. This allows
656
compatibility with the GraphIndex API, as well as ensuring that
657
the initial read (to read the root node header) can be done
658
without over-reading even on empty indices, and on small indices
659
allows single-IO to read the entire index.
660
:param unlimited_cache: If set to True, then instead of using an
661
LRUCache with size _NODE_CACHE_SIZE, we will use a dict and always
662
cache all leaf nodes.
664
self._transport = transport
668
self._recommended_pages = self._compute_recommended_pages()
669
self._root_node = None
670
# Default max size is 100,000 leave values
671
self._leaf_value_cache = None # lru_cache.LRUCache(100*1000)
673
self._leaf_node_cache = {}
674
self._internal_node_cache = {}
676
self._leaf_node_cache = lru_cache.LRUCache(_NODE_CACHE_SIZE)
677
# We use a FIFO here just to prevent possible blowout. However, a
678
# 300k record btree has only 3k leaf nodes, and only 20 internal
679
# nodes. A value of 100 scales to ~100*100*100 = 1M records.
680
self._internal_node_cache = fifo_cache.FIFOCache(100)
681
self._key_count = None
682
self._row_lengths = None
683
self._row_offsets = None # Start of each row, [-1] is the end
685
def __eq__(self, other):
686
"""Equal when self and other were created with the same parameters."""
688
type(self) == type(other) and
689
self._transport == other._transport and
690
self._name == other._name and
691
self._size == other._size)
693
def __ne__(self, other):
694
return not self.__eq__(other)
696
def _get_and_cache_nodes(self, nodes):
697
"""Read nodes and cache them in the lru.
699
The nodes list supplied is sorted and then read from disk, each node
700
being inserted it into the _node_cache.
702
Note: Asking for more nodes than the _node_cache can contain will
703
result in some of the results being immediately discarded, to prevent
704
this an assertion is raised if more nodes are asked for than are
707
:return: A dict of {node_pos: node}
710
start_of_leaves = None
711
for node_pos, node in self._read_nodes(sorted(nodes)):
712
if node_pos == 0: # Special case
713
self._root_node = node
715
if start_of_leaves is None:
716
start_of_leaves = self._row_offsets[-2]
717
if node_pos < start_of_leaves:
718
self._internal_node_cache[node_pos] = node
720
self._leaf_node_cache[node_pos] = node
721
found[node_pos] = node
724
def _compute_recommended_pages(self):
725
"""Convert transport's recommended_page_size into btree pages.
727
recommended_page_size is in bytes, we want to know how many _PAGE_SIZE
728
pages fit in that length.
730
recommended_read = self._transport.recommended_page_size()
731
recommended_pages = int(math.ceil(recommended_read /
733
return recommended_pages
735
def _compute_total_pages_in_index(self):
736
"""How many pages are in the index.
738
If we have read the header we will use the value stored there.
739
Otherwise it will be computed based on the length of the index.
741
if self._size is None:
742
raise AssertionError('_compute_total_pages_in_index should not be'
743
' called when self._size is None')
744
if self._root_node is not None:
745
# This is the number of pages as defined by the header
746
return self._row_offsets[-1]
747
# This is the number of pages as defined by the size of the index. They
748
# should be indentical.
749
total_pages = int(math.ceil(self._size / float(_PAGE_SIZE)))
752
def _expand_offsets(self, offsets):
753
"""Find extra pages to download.
755
The idea is that we always want to make big-enough requests (like 64kB
756
for http), so that we don't waste round trips. So given the entries
757
that we already have cached and the new pages being downloaded figure
758
out what other pages we might want to read.
760
See also doc/developers/btree_index_prefetch.txt for more details.
762
:param offsets: The offsets to be read
763
:return: A list of offsets to download
765
if 'index' in debug.debug_flags:
766
trace.mutter('expanding: %s\toffsets: %s', self._name, offsets)
768
if len(offsets) >= self._recommended_pages:
769
# Don't add more, we are already requesting more than enough
770
if 'index' in debug.debug_flags:
771
trace.mutter(' not expanding large request (%s >= %s)',
772
len(offsets), self._recommended_pages)
774
if self._size is None:
775
# Don't try anything, because we don't know where the file ends
776
if 'index' in debug.debug_flags:
777
trace.mutter(' not expanding without knowing index size')
779
total_pages = self._compute_total_pages_in_index()
780
cached_offsets = self._get_offsets_to_cached_pages()
781
# If reading recommended_pages would read the rest of the index, just
783
if total_pages - len(cached_offsets) <= self._recommended_pages:
784
# Read whatever is left
786
expanded = [x for x in xrange(total_pages)
787
if x not in cached_offsets]
789
expanded = range(total_pages)
790
if 'index' in debug.debug_flags:
791
trace.mutter(' reading all unread pages: %s', expanded)
794
if self._root_node is None:
795
# ATM on the first read of the root node of a large index, we don't
796
# bother pre-reading any other pages. This is because the
797
# likelyhood of actually reading interesting pages is very low.
798
# See doc/developers/btree_index_prefetch.txt for a discussion, and
799
# a possible implementation when we are guessing that the second
800
# layer index is small
801
final_offsets = offsets
803
tree_depth = len(self._row_lengths)
804
if len(cached_offsets) < tree_depth and len(offsets) == 1:
805
# We haven't read enough to justify expansion
806
# If we are only going to read the root node, and 1 leaf node,
807
# then it isn't worth expanding our request. Once we've read at
808
# least 2 nodes, then we are probably doing a search, and we
809
# start expanding our requests.
810
if 'index' in debug.debug_flags:
811
trace.mutter(' not expanding on first reads')
813
final_offsets = self._expand_to_neighbors(offsets, cached_offsets,
816
final_offsets = sorted(final_offsets)
817
if 'index' in debug.debug_flags:
818
trace.mutter('expanded: %s', final_offsets)
821
def _expand_to_neighbors(self, offsets, cached_offsets, total_pages):
822
"""Expand requests to neighbors until we have enough pages.
824
This is called from _expand_offsets after policy has determined that we
826
We only want to expand requests within a given layer. We cheat a little
827
bit and assume all requests will be in the same layer. This is true
828
given the current design, but if it changes this algorithm may perform
831
:param offsets: requested offsets
832
:param cached_offsets: offsets for pages we currently have cached
833
:return: A set() of offsets after expansion
835
final_offsets = set(offsets)
837
new_tips = set(final_offsets)
838
while len(final_offsets) < self._recommended_pages and new_tips:
842
first, end = self._find_layer_first_and_end(pos)
845
and previous not in cached_offsets
846
and previous not in final_offsets
847
and previous >= first):
848
next_tips.add(previous)
850
if (after < total_pages
851
and after not in cached_offsets
852
and after not in final_offsets
855
# This would keep us from going bigger than
856
# recommended_pages by only expanding the first offsets.
857
# However, if we are making a 'wide' request, it is
858
# reasonable to expand all points equally.
859
# if len(final_offsets) > recommended_pages:
861
final_offsets.update(next_tips)
865
def clear_cache(self):
866
"""Clear out any cached/memoized values.
868
This can be called at any time, but generally it is used when we have
869
extracted some information, but don't expect to be requesting any more
872
# Note that we don't touch self._root_node or self._internal_node_cache
873
# We don't expect either of those to be big, and it can save
874
# round-trips in the future. We may re-evaluate this if InternalNode
875
# memory starts to be an issue.
876
self._leaf_node_cache.clear()
878
def external_references(self, ref_list_num):
879
if self._root_node is None:
880
self._get_root_node()
881
if ref_list_num + 1 > self.node_ref_lists:
882
raise ValueError('No ref list %d, index has %d ref lists'
883
% (ref_list_num, self.node_ref_lists))
886
for node in self.iter_all_entries():
888
refs.update(node[3][ref_list_num])
891
def _find_layer_first_and_end(self, offset):
892
"""Find the start/stop nodes for the layer corresponding to offset.
894
:return: (first, end)
895
first is the first node in this layer
896
end is the first node of the next layer
899
for roffset in self._row_offsets:
906
def _get_offsets_to_cached_pages(self):
907
"""Determine what nodes we already have cached."""
908
cached_offsets = set(self._internal_node_cache.keys())
909
cached_offsets.update(self._leaf_node_cache.keys())
910
if self._root_node is not None:
911
cached_offsets.add(0)
912
return cached_offsets
914
def _get_root_node(self):
915
if self._root_node is None:
916
# We may not have a root node yet
917
self._get_internal_nodes([0])
918
return self._root_node
920
def _get_nodes(self, cache, node_indexes):
923
for idx in node_indexes:
924
if idx == 0 and self._root_node is not None:
925
found[0] = self._root_node
928
found[idx] = cache[idx]
933
needed = self._expand_offsets(needed)
934
found.update(self._get_and_cache_nodes(needed))
937
def _get_internal_nodes(self, node_indexes):
938
"""Get a node, from cache or disk.
940
After getting it, the node will be cached.
942
return self._get_nodes(self._internal_node_cache, node_indexes)
944
def _cache_leaf_values(self, nodes):
945
"""Cache directly from key => value, skipping the btree."""
946
if self._leaf_value_cache is not None:
947
for node in nodes.itervalues():
948
for key, value in node.keys.iteritems():
949
if key in self._leaf_value_cache:
950
# Don't add the rest of the keys, we've seen this node
953
self._leaf_value_cache[key] = value
955
def _get_leaf_nodes(self, node_indexes):
956
"""Get a bunch of nodes, from cache or disk."""
957
found = self._get_nodes(self._leaf_node_cache, node_indexes)
958
self._cache_leaf_values(found)
961
def iter_all_entries(self):
962
"""Iterate over all keys within the index.
964
:return: An iterable of (index, key, value) or (index, key, value, reference_lists).
965
The former tuple is used when there are no reference lists in the
966
index, making the API compatible with simple key:value index types.
967
There is no defined order for the result iteration - it will be in
968
the most efficient order for the index.
970
if 'evil' in debug.debug_flags:
971
trace.mutter_callsite(3,
972
"iter_all_entries scales with size of history.")
973
if not self.key_count():
975
if self._row_offsets[-1] == 1:
976
# There is only the root node, and we read that via key_count()
977
if self.node_ref_lists:
978
for key, (value, refs) in sorted(self._root_node.keys.items()):
979
yield (self, key, value, refs)
981
for key, (value, refs) in sorted(self._root_node.keys.items()):
982
yield (self, key, value)
984
start_of_leaves = self._row_offsets[-2]
985
end_of_leaves = self._row_offsets[-1]
986
needed_offsets = range(start_of_leaves, end_of_leaves)
987
if needed_offsets == [0]:
988
# Special case when we only have a root node, as we have already
990
nodes = [(0, self._root_node)]
992
nodes = self._read_nodes(needed_offsets)
993
# We iterate strictly in-order so that we can use this function
994
# for spilling index builds to disk.
995
if self.node_ref_lists:
996
for _, node in nodes:
997
for key, (value, refs) in sorted(node.keys.items()):
998
yield (self, key, value, refs)
1000
for _, node in nodes:
1001
for key, (value, refs) in sorted(node.keys.items()):
1002
yield (self, key, value)
1005
def _multi_bisect_right(in_keys, fixed_keys):
1006
"""Find the positions where each 'in_key' would fit in fixed_keys.
1008
This is equivalent to doing "bisect_right" on each in_key into
1011
:param in_keys: A sorted list of keys to match with fixed_keys
1012
:param fixed_keys: A sorted list of keys to match against
1013
:return: A list of (integer position, [key list]) tuples.
1018
# no pointers in the fixed_keys list, which means everything must
1020
return [(0, in_keys)]
1022
# TODO: Iterating both lists will generally take M + N steps
1023
# Bisecting each key will generally take M * log2 N steps.
1024
# If we had an efficient way to compare, we could pick the method
1025
# based on which has the fewer number of steps.
1026
# There is also the argument that bisect_right is a compiled
1027
# function, so there is even more to be gained.
1028
# iter_steps = len(in_keys) + len(fixed_keys)
1029
# bisect_steps = len(in_keys) * math.log(len(fixed_keys), 2)
1030
if len(in_keys) == 1: # Bisect will always be faster for M = 1
1031
return [(bisect_right(fixed_keys, in_keys[0]), in_keys)]
1032
# elif bisect_steps < iter_steps:
1034
# for key in in_keys:
1035
# offsets.setdefault(bisect_right(fixed_keys, key),
1037
# return [(o, offsets[o]) for o in sorted(offsets)]
1038
in_keys_iter = iter(in_keys)
1039
fixed_keys_iter = enumerate(fixed_keys)
1040
cur_in_key = in_keys_iter.next()
1041
cur_fixed_offset, cur_fixed_key = fixed_keys_iter.next()
1043
class InputDone(Exception): pass
1044
class FixedDone(Exception): pass
1049
# TODO: Another possibility is that rather than iterating on each side,
1050
# we could use a combination of bisecting and iterating. For
1051
# example, while cur_in_key < fixed_key, bisect to find its
1052
# point, then iterate all matching keys, then bisect (restricted
1053
# to only the remainder) for the next one, etc.
1056
if cur_in_key < cur_fixed_key:
1058
cur_out = (cur_fixed_offset, cur_keys)
1059
output.append(cur_out)
1060
while cur_in_key < cur_fixed_key:
1061
cur_keys.append(cur_in_key)
1063
cur_in_key = in_keys_iter.next()
1064
except StopIteration:
1066
# At this point cur_in_key must be >= cur_fixed_key
1067
# step the cur_fixed_key until we pass the cur key, or walk off
1069
while cur_in_key >= cur_fixed_key:
1071
cur_fixed_offset, cur_fixed_key = fixed_keys_iter.next()
1072
except StopIteration:
1075
# We consumed all of the input, nothing more to do
1078
# There was some input left, but we consumed all of fixed, so we
1079
# have to add one more for the tail
1080
cur_keys = [cur_in_key]
1081
cur_keys.extend(in_keys_iter)
1082
cur_out = (len(fixed_keys), cur_keys)
1083
output.append(cur_out)
1086
def _walk_through_internal_nodes(self, keys):
1087
"""Take the given set of keys, and find the corresponding LeafNodes.
1089
:param keys: An unsorted iterable of keys to search for
1090
:return: (nodes, index_and_keys)
1091
nodes is a dict mapping {index: LeafNode}
1092
keys_at_index is a list of tuples of [(index, [keys for Leaf])]
1094
# 6 seconds spent in miss_torture using the sorted() line.
1095
# Even with out of order disk IO it seems faster not to sort it when
1096
# large queries are being made.
1097
keys_at_index = [(0, sorted(keys))]
1099
for row_pos, next_row_start in enumerate(self._row_offsets[1:-1]):
1100
node_indexes = [idx for idx, s_keys in keys_at_index]
1101
nodes = self._get_internal_nodes(node_indexes)
1103
next_nodes_and_keys = []
1104
for node_index, sub_keys in keys_at_index:
1105
node = nodes[node_index]
1106
positions = self._multi_bisect_right(sub_keys, node.keys)
1107
node_offset = next_row_start + node.offset
1108
next_nodes_and_keys.extend([(node_offset + pos, s_keys)
1109
for pos, s_keys in positions])
1110
keys_at_index = next_nodes_and_keys
1111
# We should now be at the _LeafNodes
1112
node_indexes = [idx for idx, s_keys in keys_at_index]
1114
# TODO: We may *not* want to always read all the nodes in one
1115
# big go. Consider setting a max size on this.
1116
nodes = self._get_leaf_nodes(node_indexes)
1117
return nodes, keys_at_index
1119
def iter_entries(self, keys):
1120
"""Iterate over keys within the index.
1122
:param keys: An iterable providing the keys to be retrieved.
1123
:return: An iterable as per iter_all_entries, but restricted to the
1124
keys supplied. No additional keys will be returned, and every
1125
key supplied that is in the index will be returned.
1127
# 6 seconds spent in miss_torture using the sorted() line.
1128
# Even with out of order disk IO it seems faster not to sort it when
1129
# large queries are being made.
1130
# However, now that we are doing multi-way bisecting, we need the keys
1131
# in sorted order anyway. We could change the multi-way code to not
1132
# require sorted order. (For example, it bisects for the first node,
1133
# does an in-order search until a key comes before the current point,
1134
# which it then bisects for, etc.)
1135
keys = frozenset(keys)
1139
if not self.key_count():
1143
if self._leaf_value_cache is None:
1147
value = self._leaf_value_cache.get(key, None)
1148
if value is not None:
1149
# This key is known not to be here, skip it
1151
if self.node_ref_lists:
1152
yield (self, key, value, refs)
1154
yield (self, key, value)
1156
needed_keys.append(key)
1162
nodes, nodes_and_keys = self._walk_through_internal_nodes(needed_keys)
1163
for node_index, sub_keys in nodes_and_keys:
1166
node = nodes[node_index]
1167
for next_sub_key in sub_keys:
1168
if next_sub_key in node.keys:
1169
value, refs = node.keys[next_sub_key]
1170
if self.node_ref_lists:
1171
yield (self, next_sub_key, value, refs)
1173
yield (self, next_sub_key, value)
1175
def _find_ancestors(self, keys, ref_list_num, parent_map, missing_keys):
1176
"""Find the parent_map information for the set of keys.
1178
This populates the parent_map dict and missing_keys set based on the
1179
queried keys. It also can fill out an arbitrary number of parents that
1180
it finds while searching for the supplied keys.
1182
It is unlikely that you want to call this directly. See
1183
"CombinedGraphIndex.find_ancestry()" for a more appropriate API.
1185
:param keys: A keys whose ancestry we want to return
1186
Every key will either end up in 'parent_map' or 'missing_keys'.
1187
:param ref_list_num: This index in the ref_lists is the parents we
1189
:param parent_map: {key: parent_keys} for keys that are present in this
1190
index. This may contain more entries than were in 'keys', that are
1191
reachable ancestors of the keys requested.
1192
:param missing_keys: keys which are known to be missing in this index.
1193
This may include parents that were not directly requested, but we
1194
were able to determine that they are not present in this index.
1195
:return: search_keys parents that were found but not queried to know
1196
if they are missing or present. Callers can re-query this index for
1197
those keys, and they will be placed into parent_map or missing_keys
1199
if not self.key_count():
1200
# We use key_count() to trigger reading the root node and
1201
# determining info about this BTreeGraphIndex
1202
# If we don't have any keys, then everything is missing
1203
missing_keys.update(keys)
1205
if ref_list_num >= self.node_ref_lists:
1206
raise ValueError('No ref list %d, index has %d ref lists'
1207
% (ref_list_num, self.node_ref_lists))
1209
# The main trick we are trying to accomplish is that when we find a
1210
# key listing its parents, we expect that the parent key is also likely
1211
# to sit on the same page. Allowing us to expand parents quickly
1212
# without suffering the full stack of bisecting, etc.
1213
nodes, nodes_and_keys = self._walk_through_internal_nodes(keys)
1215
# These are parent keys which could not be immediately resolved on the
1216
# page where the child was present. Note that we may already be
1217
# searching for that key, and it may actually be present [or known
1218
# missing] on one of the other pages we are reading.
1220
# We could try searching for them in the immediate previous or next
1221
# page. If they occur "later" we could put them in a pending lookup
1222
# set, and then for each node we read thereafter we could check to
1223
# see if they are present.
1224
# However, we don't know the impact of keeping this list of things
1225
# that I'm going to search for every node I come across from here on
1227
# It doesn't handle the case when the parent key is missing on a
1228
# page that we *don't* read. So we already have to handle being
1229
# re-entrant for that.
1230
# Since most keys contain a date string, they are more likely to be
1231
# found earlier in the file than later, but we would know that right
1232
# away (key < min_key), and wouldn't keep searching it on every other
1233
# page that we read.
1234
# Mostly, it is an idea, one which should be benchmarked.
1235
parents_not_on_page = set()
1237
for node_index, sub_keys in nodes_and_keys:
1240
# sub_keys is all of the keys we are looking for that should exist
1241
# on this page, if they aren't here, then they won't be found
1242
node = nodes[node_index]
1243
node_keys = node.keys
1244
parents_to_check = set()
1245
for next_sub_key in sub_keys:
1246
if next_sub_key not in node_keys:
1247
# This one is just not present in the index at all
1248
missing_keys.add(next_sub_key)
1250
value, refs = node_keys[next_sub_key]
1251
parent_keys = refs[ref_list_num]
1252
parent_map[next_sub_key] = parent_keys
1253
parents_to_check.update(parent_keys)
1254
# Don't look for things we've already found
1255
parents_to_check = parents_to_check.difference(parent_map)
1256
# this can be used to test the benefit of having the check loop
1258
# parents_not_on_page.update(parents_to_check)
1260
while parents_to_check:
1261
next_parents_to_check = set()
1262
for key in parents_to_check:
1263
if key in node_keys:
1264
value, refs = node_keys[key]
1265
parent_keys = refs[ref_list_num]
1266
parent_map[key] = parent_keys
1267
next_parents_to_check.update(parent_keys)
1269
# This parent either is genuinely missing, or should be
1270
# found on another page. Perf test whether it is better
1271
# to check if this node should fit on this page or not.
1272
# in the 'everything-in-one-pack' scenario, this *not*
1273
# doing the check is 237ms vs 243ms.
1274
# So slightly better, but I assume the standard 'lots
1275
# of packs' is going to show a reasonable improvement
1276
# from the check, because it avoids 'going around
1277
# again' for everything that is in another index
1278
# parents_not_on_page.add(key)
1279
# Missing for some reason
1280
if key < node.min_key:
1281
# in the case of bzr.dev, 3.4k/5.3k misses are
1282
# 'earlier' misses (65%)
1283
parents_not_on_page.add(key)
1284
elif key > node.max_key:
1285
# This parent key would be present on a different
1287
parents_not_on_page.add(key)
1289
# assert key != node.min_key and key != node.max_key
1290
# If it was going to be present, it would be on
1291
# *this* page, so mark it missing.
1292
missing_keys.add(key)
1293
parents_to_check = next_parents_to_check.difference(parent_map)
1294
# Might want to do another .difference() from missing_keys
1295
# parents_not_on_page could have been found on a different page, or be
1296
# known to be missing. So cull out everything that has already been
1298
search_keys = parents_not_on_page.difference(
1299
parent_map).difference(missing_keys)
1302
def iter_entries_prefix(self, keys):
1303
"""Iterate over keys within the index using prefix matching.
1305
Prefix matching is applied within the tuple of a key, not to within
1306
the bytestring of each key element. e.g. if you have the keys ('foo',
1307
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
1308
only the former key is returned.
1310
WARNING: Note that this method currently causes a full index parse
1311
unconditionally (which is reasonably appropriate as it is a means for
1312
thunking many small indices into one larger one and still supplies
1313
iter_all_entries at the thunk layer).
1315
:param keys: An iterable providing the key prefixes to be retrieved.
1316
Each key prefix takes the form of a tuple the length of a key, but
1317
with the last N elements 'None' rather than a regular bytestring.
1318
The first element cannot be 'None'.
1319
:return: An iterable as per iter_all_entries, but restricted to the
1320
keys with a matching prefix to those supplied. No additional keys
1321
will be returned, and every match that is in the index will be
1324
keys = sorted(set(keys))
1327
# Load if needed to check key lengths
1328
if self._key_count is None:
1329
self._get_root_node()
1330
# TODO: only access nodes that can satisfy the prefixes we are looking
1331
# for. For now, to meet API usage (as this function is not used by
1332
# current bzrlib) just suck the entire index and iterate in memory.
1334
if self.node_ref_lists:
1335
if self._key_length == 1:
1336
for _1, key, value, refs in self.iter_all_entries():
1337
nodes[key] = value, refs
1340
for _1, key, value, refs in self.iter_all_entries():
1341
key_value = key, value, refs
1342
# For a key of (foo, bar, baz) create
1343
# _nodes_by_key[foo][bar][baz] = key_value
1344
key_dict = nodes_by_key
1345
for subkey in key[:-1]:
1346
key_dict = key_dict.setdefault(subkey, {})
1347
key_dict[key[-1]] = key_value
1349
if self._key_length == 1:
1350
for _1, key, value in self.iter_all_entries():
1354
for _1, key, value in self.iter_all_entries():
1355
key_value = key, value
1356
# For a key of (foo, bar, baz) create
1357
# _nodes_by_key[foo][bar][baz] = key_value
1358
key_dict = nodes_by_key
1359
for subkey in key[:-1]:
1360
key_dict = key_dict.setdefault(subkey, {})
1361
key_dict[key[-1]] = key_value
1362
if self._key_length == 1:
1366
raise errors.BadIndexKey(key)
1367
if len(key) != self._key_length:
1368
raise errors.BadIndexKey(key)
1370
if self.node_ref_lists:
1371
value, node_refs = nodes[key]
1372
yield self, key, value, node_refs
1374
yield self, key, nodes[key]
1381
raise errors.BadIndexKey(key)
1382
if len(key) != self._key_length:
1383
raise errors.BadIndexKey(key)
1384
# find what it refers to:
1385
key_dict = nodes_by_key
1386
elements = list(key)
1387
# find the subdict whose contents should be returned.
1389
while len(elements) and elements[0] is not None:
1390
key_dict = key_dict[elements[0]]
1393
# a non-existant lookup.
1398
key_dict = dicts.pop(-1)
1399
# can't be empty or would not exist
1400
item, value = key_dict.iteritems().next()
1401
if type(value) == dict:
1403
dicts.extend(key_dict.itervalues())
1406
for value in key_dict.itervalues():
1407
# each value is the key:value:node refs tuple
1409
yield (self, ) + value
1411
# the last thing looked up was a terminal element
1412
yield (self, ) + key_dict
1414
def key_count(self):
1415
"""Return an estimate of the number of keys in this index.
1417
For BTreeGraphIndex the estimate is exact as it is contained in the
1420
if self._key_count is None:
1421
self._get_root_node()
1422
return self._key_count
1424
def _compute_row_offsets(self):
1425
"""Fill out the _row_offsets attribute based on _row_lengths."""
1428
for row in self._row_lengths:
1429
offsets.append(row_offset)
1431
offsets.append(row_offset)
1432
self._row_offsets = offsets
1434
def _parse_header_from_bytes(self, bytes):
1435
"""Parse the header from a region of bytes.
1437
:param bytes: The data to parse.
1438
:return: An offset, data tuple such as readv yields, for the unparsed
1439
data. (which may be of length 0).
1441
signature = bytes[0:len(self._signature())]
1442
if not signature == self._signature():
1443
raise errors.BadIndexFormatSignature(self._name, BTreeGraphIndex)
1444
lines = bytes[len(self._signature()):].splitlines()
1445
options_line = lines[0]
1446
if not options_line.startswith(_OPTION_NODE_REFS):
1447
raise errors.BadIndexOptions(self)
1449
self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):])
1451
raise errors.BadIndexOptions(self)
1452
options_line = lines[1]
1453
if not options_line.startswith(_OPTION_KEY_ELEMENTS):
1454
raise errors.BadIndexOptions(self)
1456
self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):])
1458
raise errors.BadIndexOptions(self)
1459
options_line = lines[2]
1460
if not options_line.startswith(_OPTION_LEN):
1461
raise errors.BadIndexOptions(self)
1463
self._key_count = int(options_line[len(_OPTION_LEN):])
1465
raise errors.BadIndexOptions(self)
1466
options_line = lines[3]
1467
if not options_line.startswith(_OPTION_ROW_LENGTHS):
1468
raise errors.BadIndexOptions(self)
1470
self._row_lengths = map(int, [length for length in
1471
options_line[len(_OPTION_ROW_LENGTHS):].split(',')
1474
raise errors.BadIndexOptions(self)
1475
self._compute_row_offsets()
1477
# calculate the bytes we have processed
1478
header_end = (len(signature) + sum(map(len, lines[0:4])) + 4)
1479
return header_end, bytes[header_end:]
1481
def _read_nodes(self, nodes):
1482
"""Read some nodes from disk into the LRU cache.
1484
This performs a readv to get the node data into memory, and parses each
1485
node, then yields it to the caller. The nodes are requested in the
1486
supplied order. If possible doing sort() on the list before requesting
1487
a read may improve performance.
1489
:param nodes: The nodes to read. 0 - first node, 1 - second node etc.
1492
# may be the byte string of the whole file
1494
# list of (offset, length) regions of the file that should, evenually
1495
# be read in to data_ranges, either from 'bytes' or from the transport
1498
offset = index * _PAGE_SIZE
1501
# Root node - special case
1503
size = min(_PAGE_SIZE, self._size)
1505
# The only case where we don't know the size, is for very
1506
# small indexes. So we read the whole thing
1507
bytes = self._transport.get_bytes(self._name)
1508
self._size = len(bytes)
1509
# the whole thing should be parsed out of 'bytes'
1510
ranges.append((0, len(bytes)))
1513
if offset > self._size:
1514
raise AssertionError('tried to read past the end'
1515
' of the file %s > %s'
1516
% (offset, self._size))
1517
size = min(size, self._size - offset)
1518
ranges.append((offset, size))
1521
elif bytes is not None:
1522
# already have the whole file
1523
data_ranges = [(start, bytes[start:start+_PAGE_SIZE])
1524
for start in xrange(0, len(bytes), _PAGE_SIZE)]
1525
elif self._file is None:
1526
data_ranges = self._transport.readv(self._name, ranges)
1529
for offset, size in ranges:
1530
self._file.seek(offset)
1531
data_ranges.append((offset, self._file.read(size)))
1532
for offset, data in data_ranges:
1534
# extract the header
1535
offset, data = self._parse_header_from_bytes(data)
1538
bytes = zlib.decompress(data)
1539
if bytes.startswith(_LEAF_FLAG):
1540
node = _LeafNode(bytes, self._key_length, self.node_ref_lists)
1541
elif bytes.startswith(_INTERNAL_FLAG):
1542
node = _InternalNode(bytes)
1544
raise AssertionError("Unknown node type for %r" % bytes)
1545
yield offset / _PAGE_SIZE, node
1547
def _signature(self):
1548
"""The file signature for this index type."""
1552
"""Validate that everything in the index can be accessed."""
1553
# just read and parse every node.
1554
self._get_root_node()
1555
if len(self._row_lengths) > 1:
1556
start_node = self._row_offsets[1]
1558
# We shouldn't be reading anything anyway
1560
node_end = self._row_offsets[-1]
1561
for node in self._read_nodes(range(start_node, node_end)):
1566
from bzrlib import _btree_serializer_pyx as _btree_serializer
1567
except ImportError, e:
1568
osutils.failed_to_load_extension(e)
1569
from bzrlib import _btree_serializer_py as _btree_serializer