1
# Copyright (C) 2008, 2009 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17
"""Persistent maps from tuple_of_strings->string using CHK stores.
19
Overview and current status:
21
The CHKMap class implements a dict from tuple_of_strings->string by using a trie
22
with internal nodes of 8-bit fan out; The key tuples are mapped to strings by
23
joining them by \x00, and \x00 padding shorter keys out to the length of the
24
longest key. Leaf nodes are packed as densely as possible, and internal nodes
25
are all an additional 8-bits wide leading to a sparse upper tree.
27
Updates to a CHKMap are done preferentially via the apply_delta method, to
28
allow optimisation of the update operation; but individual map/unmap calls are
29
possible and supported. All changes via map/unmap are buffered in memory until
30
the _save method is called to force serialisation of the tree. apply_delta
31
performs a _save implicitly.
36
Densely packed upper nodes.
42
from bzrlib import lazy_import
43
lazy_import.lazy_import(globals(), """
44
from bzrlib import versionedfile
54
# If each line is 50 bytes, and you have 255 internal pages, with 255-way fan
55
# out, it takes 3.1MB to cache the layer.
56
_PAGE_CACHE_SIZE = 4*1024*1024
57
# We are caching bytes so len(value) is perfectly accurate
58
_page_cache = lru_cache.LRUSizeCache(_PAGE_CACHE_SIZE)
60
# If a ChildNode falls below this many bytes, we check for a remap
61
_INTERESTING_NEW_SIZE = 50
62
# If a ChildNode shrinks by more than this amount, we check for a remap
63
_INTERESTING_SHRINKAGE_LIMIT = 20
64
# If we delete more than this many nodes applying a delta, we check for a remap
65
_INTERESTING_DELETES_LIMIT = 5
68
def _search_key_plain(key):
69
"""Map the key tuple into a search string that just uses the key bytes."""
70
return '\x00'.join(key)
73
search_key_registry = registry.Registry()
74
search_key_registry.register('plain', _search_key_plain)
78
"""A persistent map from string to string backed by a CHK store."""
80
def __init__(self, store, root_key, search_key_func=None):
81
"""Create a CHKMap object.
83
:param store: The store the CHKMap is stored in.
84
:param root_key: The root key of the map. None to create an empty
86
:param search_key_func: A function mapping a key => bytes. These bytes
87
are then used by the internal nodes to split up leaf nodes into
91
if search_key_func is None:
92
search_key_func = _search_key_plain
93
self._search_key_func = search_key_func
95
self._root_node = LeafNode(search_key_func=search_key_func)
97
self._root_node = self._node_key(root_key)
99
def apply_delta(self, delta):
100
"""Apply a delta to the map.
102
:param delta: An iterable of old_key, new_key, new_value tuples.
103
If new_key is not None, then new_key->new_value is inserted
104
into the map; if old_key is not None, then the old mapping
105
of old_key is removed.
108
for old, new, value in delta:
109
if old is not None and old != new:
110
self.unmap(old, check_remap=False)
112
for old, new, value in delta:
115
if delete_count > _INTERESTING_DELETES_LIMIT:
116
trace.mutter("checking remap as %d deletions", delete_count)
120
def _ensure_root(self):
121
"""Ensure that the root node is an object not a key."""
122
if type(self._root_node) is tuple:
123
# Demand-load the root
124
self._root_node = self._get_node(self._root_node)
126
def _get_node(self, node):
129
Note that this does not update the _items dict in objects containing a
130
reference to this node. As such it does not prevent subsequent IO being
133
:param node: A tuple key or node object.
134
:return: A node object.
136
if type(node) is tuple:
137
bytes = self._read_bytes(node)
138
return _deserialise(bytes, node,
139
search_key_func=self._search_key_func)
143
def _read_bytes(self, key):
145
return _page_cache[key]
147
stream = self._store.get_record_stream([key], 'unordered', True)
148
bytes = stream.next().get_bytes_as('fulltext')
149
_page_cache[key] = bytes
152
def _dump_tree(self, include_keys=False):
153
"""Return the tree in a string representation."""
155
res = self._dump_tree_node(self._root_node, prefix='', indent='',
156
include_keys=include_keys)
157
res.append('') # Give a trailing '\n'
158
return '\n'.join(res)
160
def _dump_tree_node(self, node, prefix, indent, include_keys=True):
161
"""For this node and all children, generate a string representation."""
166
node_key = node.key()
167
if node_key is not None:
168
key_str = ' %s' % (node_key[0],)
171
result.append('%s%r %s%s' % (indent, prefix, node.__class__.__name__,
173
if type(node) is InternalNode:
174
# Trigger all child nodes to get loaded
175
list(node._iter_nodes(self._store))
176
for prefix, sub in sorted(node._items.iteritems()):
177
result.extend(self._dump_tree_node(sub, prefix, indent + ' ',
178
include_keys=include_keys))
180
for key, value in sorted(node._items.iteritems()):
181
# Don't use prefix nor indent here to line up when used in
182
# tests in conjunction with assertEqualDiff
183
result.append(' %r %r' % (key, value))
187
def from_dict(klass, store, initial_value, maximum_size=0, key_width=1,
188
search_key_func=None):
189
"""Create a CHKMap in store with initial_value as the content.
191
:param store: The store to record initial_value in, a VersionedFiles
192
object with 1-tuple keys supporting CHK key generation.
193
:param initial_value: A dict to store in store. Its keys and values
195
:param maximum_size: The maximum_size rule to apply to nodes. This
196
determines the size at which no new data is added to a single node.
197
:param key_width: The number of elements in each key_tuple being stored
199
:param search_key_func: A function mapping a key => bytes. These bytes
200
are then used by the internal nodes to split up leaf nodes into
202
:return: The root chk of the resulting CHKMap.
204
root_key = klass._create_directly(store, initial_value,
205
maximum_size=maximum_size, key_width=key_width,
206
search_key_func=search_key_func)
210
def _create_via_map(klass, store, initial_value, maximum_size=0,
211
key_width=1, search_key_func=None):
212
result = klass(store, None, search_key_func=search_key_func)
213
result._root_node.set_maximum_size(maximum_size)
214
result._root_node._key_width = key_width
216
for key, value in initial_value.items():
217
delta.append((None, key, value))
218
root_key = result.apply_delta(delta)
222
def _create_directly(klass, store, initial_value, maximum_size=0,
223
key_width=1, search_key_func=None):
224
node = LeafNode(search_key_func=search_key_func)
225
node.set_maximum_size(maximum_size)
226
node._key_width = key_width
227
node._items = dict(initial_value)
228
node._raw_size = sum([node._key_value_len(key, value)
229
for key,value in initial_value.iteritems()])
230
node._len = len(node._items)
231
node._compute_search_prefix()
232
node._compute_serialised_prefix()
235
and node._current_size() > maximum_size):
236
prefix, node_details = node._split(store)
237
if len(node_details) == 1:
238
raise AssertionError('Failed to split using node._split')
239
node = InternalNode(prefix, search_key_func=search_key_func)
240
node.set_maximum_size(maximum_size)
241
node._key_width = key_width
242
for split, subnode in node_details:
243
node.add_node(split, subnode)
244
keys = list(node.serialise(store))
247
def iter_changes(self, basis):
248
"""Iterate over the changes between basis and self.
250
:return: An iterator of tuples: (key, old_value, new_value). Old_value
251
is None for keys only in self; new_value is None for keys only in
255
# Read both trees in lexographic, highest-first order.
256
# Any identical nodes we skip
257
# Any unique prefixes we output immediately.
258
# values in a leaf node are treated as single-value nodes in the tree
259
# which allows them to be not-special-cased. We know to output them
260
# because their value is a string, not a key(tuple) or node.
262
# corner cases to beware of when considering this function:
263
# *) common references are at different heights.
264
# consider two trees:
265
# {'a': LeafNode={'aaa':'foo', 'aab':'bar'}, 'b': LeafNode={'b'}}
266
# {'a': InternalNode={'aa':LeafNode={'aaa':'foo', 'aab':'bar'},
267
# 'ab':LeafNode={'ab':'bar'}}
268
# 'b': LeafNode={'b'}}
269
# the node with aaa/aab will only be encountered in the second tree
270
# after reading the 'a' subtree, but it is encountered in the first
271
# tree immediately. Variations on this may have read internal nodes
272
# like this. we want to cut the entire pending subtree when we
273
# realise we have a common node. For this we use a list of keys -
274
# the path to a node - and check the entire path is clean as we
276
if self._node_key(self._root_node) == self._node_key(basis._root_node):
280
excluded_keys = set()
281
self_node = self._root_node
282
basis_node = basis._root_node
283
# A heap, each element is prefix, node(tuple/NodeObject/string),
284
# key_path (a list of tuples, tail-sharing down the tree.)
287
def process_node(node, path, a_map, pending):
288
# take a node and expand it
289
node = a_map._get_node(node)
290
if type(node) == LeafNode:
291
path = (node._key, path)
292
for key, value in node._items.items():
293
# For a LeafNode, the key is a serialized_key, rather than
294
# a search_key, but the heap is using search_keys
295
search_key = node._search_key_func(key)
296
heapq.heappush(pending, (search_key, key, value, path))
298
# type(node) == InternalNode
299
path = (node._key, path)
300
for prefix, child in node._items.items():
301
heapq.heappush(pending, (prefix, None, child, path))
302
def process_common_internal_nodes(self_node, basis_node):
303
self_items = set(self_node._items.items())
304
basis_items = set(basis_node._items.items())
305
path = (self_node._key, None)
306
for prefix, child in self_items - basis_items:
307
heapq.heappush(self_pending, (prefix, None, child, path))
308
path = (basis_node._key, None)
309
for prefix, child in basis_items - self_items:
310
heapq.heappush(basis_pending, (prefix, None, child, path))
311
def process_common_leaf_nodes(self_node, basis_node):
312
self_items = set(self_node._items.items())
313
basis_items = set(basis_node._items.items())
314
path = (self_node._key, None)
315
for key, value in self_items - basis_items:
316
prefix = self._search_key_func(key)
317
heapq.heappush(self_pending, (prefix, key, value, path))
318
path = (basis_node._key, None)
319
for key, value in basis_items - self_items:
320
prefix = basis._search_key_func(key)
321
heapq.heappush(basis_pending, (prefix, key, value, path))
322
def process_common_prefix_nodes(self_node, self_path,
323
basis_node, basis_path):
324
# Would it be more efficient if we could request both at the same
326
self_node = self._get_node(self_node)
327
basis_node = basis._get_node(basis_node)
328
if (type(self_node) == InternalNode
329
and type(basis_node) == InternalNode):
330
# Matching internal nodes
331
process_common_internal_nodes(self_node, basis_node)
332
elif (type(self_node) == LeafNode
333
and type(basis_node) == LeafNode):
334
process_common_leaf_nodes(self_node, basis_node)
336
process_node(self_node, self_path, self, self_pending)
337
process_node(basis_node, basis_path, basis, basis_pending)
338
process_common_prefix_nodes(self_node, None, basis_node, None)
341
excluded_keys = set()
342
def check_excluded(key_path):
343
# Note that this is N^2, it depends on us trimming trees
344
# aggressively to not become slow.
345
# A better implementation would probably have a reverse map
346
# back to the children of a node, and jump straight to it when
347
# a common node is detected, the proceed to remove the already
348
# pending children. bzrlib.graph has a searcher module with a
350
while key_path is not None:
351
key, key_path = key_path
352
if key in excluded_keys:
357
while self_pending or basis_pending:
360
# self is exhausted: output remainder of basis
361
for prefix, key, node, path in basis_pending:
362
if check_excluded(path):
364
node = basis._get_node(node)
367
yield (key, node, None)
369
# subtree - fastpath the entire thing.
370
for key, value in node.iteritems(basis._store):
371
yield (key, value, None)
373
elif not basis_pending:
374
# basis is exhausted: output remainder of self.
375
for prefix, key, node, path in self_pending:
376
if check_excluded(path):
378
node = self._get_node(node)
381
yield (key, None, node)
383
# subtree - fastpath the entire thing.
384
for key, value in node.iteritems(self._store):
385
yield (key, None, value)
388
# XXX: future optimisation - yield the smaller items
389
# immediately rather than pushing everything on/off the
390
# heaps. Applies to both internal nodes and leafnodes.
391
if self_pending[0][0] < basis_pending[0][0]:
393
prefix, key, node, path = heapq.heappop(self_pending)
394
if check_excluded(path):
398
yield (key, None, node)
400
process_node(node, path, self, self_pending)
402
elif self_pending[0][0] > basis_pending[0][0]:
404
prefix, key, node, path = heapq.heappop(basis_pending)
405
if check_excluded(path):
409
yield (key, node, None)
411
process_node(node, path, basis, basis_pending)
414
# common prefix: possibly expand both
415
if self_pending[0][1] is None:
420
if basis_pending[0][1] is None:
425
if not read_self and not read_basis:
426
# compare a common value
427
self_details = heapq.heappop(self_pending)
428
basis_details = heapq.heappop(basis_pending)
429
if self_details[2] != basis_details[2]:
430
yield (self_details[1],
431
basis_details[2], self_details[2])
433
# At least one side wasn't a simple value
434
if (self._node_key(self_pending[0][2]) ==
435
self._node_key(basis_pending[0][2])):
436
# Identical pointers, skip (and don't bother adding to
437
# excluded, it won't turn up again.
438
heapq.heappop(self_pending)
439
heapq.heappop(basis_pending)
441
# Now we need to expand this node before we can continue
442
if read_self and read_basis:
443
# Both sides start with the same prefix, so process
445
self_prefix, _, self_node, self_path = heapq.heappop(
447
basis_prefix, _, basis_node, basis_path = heapq.heappop(
449
if self_prefix != basis_prefix:
450
raise AssertionError(
451
'%r != %r' % (self_prefix, basis_prefix))
452
process_common_prefix_nodes(
453
self_node, self_path,
454
basis_node, basis_path)
457
prefix, key, node, path = heapq.heappop(self_pending)
458
if check_excluded(path):
460
process_node(node, path, self, self_pending)
462
prefix, key, node, path = heapq.heappop(basis_pending)
463
if check_excluded(path):
465
process_node(node, path, basis, basis_pending)
468
def iteritems(self, key_filter=None):
469
"""Iterate over the entire CHKMap's contents."""
471
return self._root_node.iteritems(self._store, key_filter=key_filter)
474
"""Return the key for this map."""
475
if type(self._root_node) is tuple:
476
return self._root_node
478
return self._root_node._key
482
return len(self._root_node)
484
def map(self, key, value):
485
"""Map a key tuple to value."""
486
# Need a root object.
488
prefix, node_details = self._root_node.map(self._store, key, value)
489
if len(node_details) == 1:
490
self._root_node = node_details[0][1]
492
self._root_node = InternalNode(prefix,
493
search_key_func=self._search_key_func)
494
self._root_node.set_maximum_size(node_details[0][1].maximum_size)
495
self._root_node._key_width = node_details[0][1]._key_width
496
for split, node in node_details:
497
self._root_node.add_node(split, node)
499
def _node_key(self, node):
500
"""Get the key for a node whether it's a tuple or node."""
501
if type(node) is tuple:
506
def unmap(self, key, check_remap=True):
507
"""remove key from the map."""
509
if type(self._root_node) is InternalNode:
510
unmapped = self._root_node.unmap(self._store, key,
511
check_remap=check_remap)
513
unmapped = self._root_node.unmap(self._store, key)
514
self._root_node = unmapped
516
def _check_remap(self):
517
"""Check if nodes can be collapsed."""
519
if type(self._root_node) is InternalNode:
520
self._root_node._check_remap(self._store)
523
"""Save the map completely.
525
:return: The key of the root node.
527
if type(self._root_node) is tuple:
529
return self._root_node
530
keys = list(self._root_node.serialise(self._store))
535
"""Base class defining the protocol for CHK Map nodes.
537
:ivar _raw_size: The total size of the serialized key:value data, before
538
adding the header bytes, and without prefix compression.
541
def __init__(self, key_width=1):
544
:param key_width: The width of keys for this node.
547
# Current number of elements
549
self._maximum_size = 0
550
self._key_width = key_width
551
# current size in bytes
553
# The pointers/values this node has - meaning defined by child classes.
555
# The common search prefix
556
self._search_prefix = None
559
items_str = str(sorted(self._items))
560
if len(items_str) > 20:
561
items_str = items_str[:16] + '...]'
562
return '%s(key:%s len:%s size:%s max:%s prefix:%s items:%s)' % (
563
self.__class__.__name__, self._key, self._len, self._raw_size,
564
self._maximum_size, self._search_prefix, items_str)
573
def maximum_size(self):
574
"""What is the upper limit for adding references to a node."""
575
return self._maximum_size
577
def set_maximum_size(self, new_size):
578
"""Set the size threshold for nodes.
580
:param new_size: The size at which no data is added to a node. 0 for
583
self._maximum_size = new_size
586
def common_prefix(cls, prefix, key):
587
"""Given 2 strings, return the longest prefix common to both.
589
:param prefix: This has been the common prefix for other keys, so it is
590
more likely to be the common prefix in this case as well.
591
:param key: Another string to compare to
593
if key.startswith(prefix):
596
# Is there a better way to do this?
597
for pos, (left, right) in enumerate(zip(prefix, key)):
601
common = prefix[:pos+1]
605
def common_prefix_for_keys(cls, keys):
606
"""Given a list of keys, find their common prefix.
608
:param keys: An iterable of strings.
609
:return: The longest common prefix of all keys.
613
if common_prefix is None:
616
common_prefix = cls.common_prefix(common_prefix, key)
617
if not common_prefix:
618
# if common_prefix is the empty string, then we know it won't
624
# Singleton indicating we have not computed _search_prefix yet
627
class LeafNode(Node):
628
"""A node containing actual key:value pairs.
630
:ivar _items: A dict of key->value items. The key is in tuple form.
631
:ivar _size: The number of bytes that would be used by serializing all of
635
def __init__(self, search_key_func=None):
637
# All of the keys in this leaf node share this common prefix
638
self._common_serialised_prefix = None
639
self._serialise_key = '\x00'.join
640
if search_key_func is None:
641
self._search_key_func = _search_key_plain
643
self._search_key_func = search_key_func
646
items_str = str(sorted(self._items))
647
if len(items_str) > 20:
648
items_str = items_str[:16] + '...]'
650
'%s(key:%s len:%s size:%s max:%s prefix:%s keywidth:%s items:%s)' \
651
% (self.__class__.__name__, self._key, self._len, self._raw_size,
652
self._maximum_size, self._search_prefix, self._key_width, items_str)
654
def _current_size(self):
655
"""Answer the current serialised size of this node.
657
This differs from self._raw_size in that it includes the bytes used for
660
if self._common_serialised_prefix is None:
664
# We will store a single string with the common prefix
665
# And then that common prefix will not be stored in any of the
667
prefix_len = len(self._common_serialised_prefix)
668
bytes_for_items = (self._raw_size - (prefix_len * self._len))
669
return (9 # 'chkleaf:\n'
670
+ len(str(self._maximum_size)) + 1
671
+ len(str(self._key_width)) + 1
672
+ len(str(self._len)) + 1
677
def deserialise(klass, bytes, key, search_key_func=None):
678
"""Deserialise bytes, with key key, into a LeafNode.
680
:param bytes: The bytes of the node.
681
:param key: The key that the serialised node has.
683
return _deserialise_leaf_node(bytes, key,
684
search_key_func=search_key_func)
686
def iteritems(self, store, key_filter=None):
687
"""Iterate over items in the node.
689
:param key_filter: A filter to apply to the node. It should be a
690
list/set/dict or similar repeatedly iterable container.
692
if key_filter is not None:
693
# Adjust the filter - short elements go to a prefix filter. All
694
# other items are looked up directly.
695
# XXX: perhaps defaultdict? Profiling<rinse and repeat>
697
for key in key_filter:
698
if len(key) == self._key_width:
699
# This filter is meant to match exactly one key, yield it
702
yield key, self._items[key]
704
# This key is not present in this map, continue
707
# Short items, we need to match based on a prefix
708
length_filter = filters.setdefault(len(key), set())
709
length_filter.add(key)
711
filters = filters.items()
712
for item in self._items.iteritems():
713
for length, length_filter in filters:
714
if item[0][:length] in length_filter:
718
for item in self._items.iteritems():
721
def _key_value_len(self, key, value):
722
# TODO: Should probably be done without actually joining the key, but
723
# then that can be done via the C extension
724
return (len(self._serialise_key(key)) + 1
725
+ len(str(value.count('\n'))) + 1
728
def _search_key(self, key):
729
return self._search_key_func(key)
731
def _map_no_split(self, key, value):
732
"""Map a key to a value.
734
This assumes either the key does not already exist, or you have already
735
removed its size and length from self.
737
:return: True if adding this node should cause us to split.
739
self._items[key] = value
740
self._raw_size += self._key_value_len(key, value)
742
serialised_key = self._serialise_key(key)
743
if self._common_serialised_prefix is None:
744
self._common_serialised_prefix = serialised_key
746
self._common_serialised_prefix = self.common_prefix(
747
self._common_serialised_prefix, serialised_key)
748
search_key = self._search_key(key)
749
if self._search_prefix is _unknown:
750
self._compute_search_prefix()
751
if self._search_prefix is None:
752
self._search_prefix = search_key
754
self._search_prefix = self.common_prefix(
755
self._search_prefix, search_key)
757
and self._maximum_size
758
and self._current_size() > self._maximum_size):
759
# Check to see if all of the search_keys for this node are
760
# identical. We allow the node to grow under that circumstance
761
# (we could track this as common state, but it is infrequent)
762
if (search_key != self._search_prefix
763
or not self._are_search_keys_identical()):
767
def _split(self, store):
768
"""We have overflowed.
770
Split this node into multiple LeafNodes, return it up the stack so that
771
the next layer creates a new InternalNode and references the new nodes.
773
:return: (common_serialised_prefix, [(node_serialised_prefix, node)])
775
if self._search_prefix is _unknown:
776
raise AssertionError('Search prefix must be known')
777
common_prefix = self._search_prefix
778
split_at = len(common_prefix) + 1
780
for key, value in self._items.iteritems():
781
search_key = self._search_key(key)
782
prefix = search_key[:split_at]
783
# TODO: Generally only 1 key can be exactly the right length,
784
# which means we can only have 1 key in the node pointed
785
# at by the 'prefix\0' key. We might want to consider
786
# folding it into the containing InternalNode rather than
787
# having a fixed length-1 node.
788
# Note this is probably not true for hash keys, as they
789
# may get a '\00' node anywhere, but won't have keys of
791
if len(prefix) < split_at:
792
prefix += '\x00'*(split_at - len(prefix))
793
if prefix not in result:
794
node = LeafNode(search_key_func=self._search_key_func)
795
node.set_maximum_size(self._maximum_size)
796
node._key_width = self._key_width
797
result[prefix] = node
799
node = result[prefix]
800
sub_prefix, node_details = node.map(store, key, value)
801
if len(node_details) > 1:
802
if prefix != sub_prefix:
803
# This node has been split and is now found via a different
806
new_node = InternalNode(sub_prefix,
807
search_key_func=self._search_key_func)
808
new_node.set_maximum_size(self._maximum_size)
809
new_node._key_width = self._key_width
810
for split, node in node_details:
811
new_node.add_node(split, node)
812
result[prefix] = new_node
813
return common_prefix, result.items()
815
def map(self, store, key, value):
816
"""Map key to value."""
817
if key in self._items:
818
self._raw_size -= self._key_value_len(key, self._items[key])
821
if self._map_no_split(key, value):
822
return self._split(store)
824
if self._search_prefix is _unknown:
825
raise AssertionError('%r must be known' % self._search_prefix)
826
return self._search_prefix, [("", self)]
828
def serialise(self, store):
829
"""Serialise the LeafNode to store.
831
:param store: A VersionedFiles honouring the CHK extensions.
832
:return: An iterable of the keys inserted by this operation.
834
lines = ["chkleaf:\n"]
835
lines.append("%d\n" % self._maximum_size)
836
lines.append("%d\n" % self._key_width)
837
lines.append("%d\n" % self._len)
838
if self._common_serialised_prefix is None:
840
if len(self._items) != 0:
841
raise AssertionError('If _common_serialised_prefix is None'
842
' we should have no items')
844
lines.append('%s\n' % (self._common_serialised_prefix,))
845
prefix_len = len(self._common_serialised_prefix)
846
for key, value in sorted(self._items.items()):
847
# Always add a final newline
848
value_lines = osutils.chunks_to_lines([value + '\n'])
849
serialized = "%s\x00%s\n" % (self._serialise_key(key),
851
if not serialized.startswith(self._common_serialised_prefix):
852
raise AssertionError('We thought the common prefix was %r'
853
' but entry %r does not have it in common'
854
% (self._common_serialised_prefix, serialized))
855
lines.append(serialized[prefix_len:])
856
lines.extend(value_lines)
857
sha1, _, _ = store.add_lines((None,), (), lines)
858
self._key = ("sha1:" + sha1,)
859
bytes = ''.join(lines)
860
if len(bytes) != self._current_size():
861
raise AssertionError('Invalid _current_size')
862
_page_cache.add(self._key, bytes)
866
"""Return the references to other CHK's held by this node."""
869
def _compute_search_prefix(self):
870
"""Determine the common search prefix for all keys in this node.
872
:return: A bytestring of the longest search key prefix that is
873
unique within this node.
875
search_keys = [self._search_key_func(key) for key in self._items]
876
self._search_prefix = self.common_prefix_for_keys(search_keys)
877
return self._search_prefix
879
def _are_search_keys_identical(self):
880
"""Check to see if the search keys for all entries are the same.
882
When using a hash as the search_key it is possible for non-identical
883
keys to collide. If that happens enough, we may try overflow a
884
LeafNode, but as all are collisions, we must not split.
886
common_search_key = None
887
for key in self._items:
888
search_key = self._search_key(key)
889
if common_search_key is None:
890
common_search_key = search_key
891
elif search_key != common_search_key:
895
def _compute_serialised_prefix(self):
896
"""Determine the common prefix for serialised keys in this node.
898
:return: A bytestring of the longest serialised key prefix that is
899
unique within this node.
901
serialised_keys = [self._serialise_key(key) for key in self._items]
902
self._common_serialised_prefix = self.common_prefix_for_keys(
904
return self._common_serialised_prefix
906
def unmap(self, store, key):
907
"""Unmap key from the node."""
909
self._raw_size -= self._key_value_len(key, self._items[key])
911
trace.mutter("key %s not found in %r", key, self._items)
916
# Recompute from scratch
917
self._compute_search_prefix()
918
self._compute_serialised_prefix()
922
class InternalNode(Node):
923
"""A node that contains references to other nodes.
925
An InternalNode is responsible for mapping search key prefixes to child
928
:ivar _items: serialised_key => node dictionary. node may be a tuple,
929
LeafNode or InternalNode.
932
def __init__(self, prefix='', search_key_func=None):
934
# The size of an internalnode with default values and no children.
935
# How many octets key prefixes within this node are.
937
self._search_prefix = prefix
938
if search_key_func is None:
939
self._search_key_func = _search_key_plain
941
self._search_key_func = search_key_func
943
def add_node(self, prefix, node):
944
"""Add a child node with prefix prefix, and node node.
946
:param prefix: The search key prefix for node.
947
:param node: The node being added.
949
if self._search_prefix is None:
950
raise AssertionError("_search_prefix should not be None")
951
if not prefix.startswith(self._search_prefix):
952
raise AssertionError("prefixes mismatch: %s must start with %s"
953
% (prefix,self._search_prefix))
954
if len(prefix) != len(self._search_prefix) + 1:
955
raise AssertionError("prefix wrong length: len(%s) is not %d" %
956
(prefix, len(self._search_prefix) + 1))
957
self._len += len(node)
958
if not len(self._items):
959
self._node_width = len(prefix)
960
if self._node_width != len(self._search_prefix) + 1:
961
raise AssertionError("node width mismatch: %d is not %d" %
962
(self._node_width, len(self._search_prefix) + 1))
963
self._items[prefix] = node
966
def _current_size(self):
967
"""Answer the current serialised size of this node."""
968
return (self._raw_size + len(str(self._len)) + len(str(self._key_width)) +
969
len(str(self._maximum_size)))
972
def deserialise(klass, bytes, key, search_key_func=None):
973
"""Deserialise bytes to an InternalNode, with key key.
975
:param bytes: The bytes of the node.
976
:param key: The key that the serialised node has.
977
:return: An InternalNode instance.
979
return _deserialise_internal_node(bytes, key,
980
search_key_func=search_key_func)
982
def iteritems(self, store, key_filter=None):
983
for node, node_filter in self._iter_nodes(store, key_filter=key_filter):
984
for item in node.iteritems(store, key_filter=node_filter):
987
def _iter_nodes(self, store, key_filter=None, batch_size=None):
988
"""Iterate over node objects which match key_filter.
990
:param store: A store to use for accessing content.
991
:param key_filter: A key filter to filter nodes. Only nodes that might
992
contain a key in key_filter will be returned.
993
:param batch_size: If not None, then we will return the nodes that had
994
to be read using get_record_stream in batches, rather than reading
996
:return: An iterable of nodes. This function does not have to be fully
997
consumed. (There will be no pending I/O when items are being returned.)
999
# Map from chk key ('sha1:...',) to (prefix, key_filter)
1000
# prefix is the key in self._items to use, key_filter is the key_filter
1001
# entries that would match this node
1004
if key_filter is None:
1005
# yielding all nodes, yield whatever we have, and queue up a read
1006
# for whatever we are missing
1008
for prefix, node in self._items.iteritems():
1009
if node.__class__ is tuple:
1010
keys[node] = (prefix, None)
1013
elif len(key_filter) == 1:
1014
# Technically, this path could also be handled by the first check
1015
# in 'self._node_width' in length_filters. However, we can handle
1016
# this case without spending any time building up the
1017
# prefix_to_keys, etc state.
1019
# This is a bit ugly, but TIMEIT showed it to be by far the fastest
1020
# 0.626us list(key_filter)[0]
1021
# is a func() for list(), 2 mallocs, and a getitem
1022
# 0.489us [k for k in key_filter][0]
1023
# still has the mallocs, avoids the func() call
1024
# 0.350us iter(key_filter).next()
1025
# has a func() call, and mallocs an iterator
1026
# 0.125us for key in key_filter: pass
1027
# no func() overhead, might malloc an iterator
1028
# 0.105us for key in key_filter: break
1029
# no func() overhead, might malloc an iterator, probably
1030
# avoids checking an 'else' clause as part of the for
1031
for key in key_filter:
1033
search_prefix = self._search_prefix_filter(key)
1034
if len(search_prefix) == self._node_width:
1035
# This item will match exactly, so just do a dict lookup, and
1036
# see what we can return
1039
node = self._items[search_prefix]
1041
# A given key can only match 1 child node, if it isn't
1042
# there, then we can just return nothing
1044
if node.__class__ is tuple:
1045
keys[node] = (search_prefix, [key])
1047
# This is loaded, and the only thing that can match,
1052
# First, convert all keys into a list of search prefixes
1053
# Aggregate common prefixes, and track the keys they come from
1056
for key in key_filter:
1057
search_prefix = self._search_prefix_filter(key)
1058
length_filter = length_filters.setdefault(
1059
len(search_prefix), set())
1060
length_filter.add(search_prefix)
1061
prefix_to_keys.setdefault(search_prefix, []).append(key)
1063
if (self._node_width in length_filters
1064
and len(length_filters) == 1):
1065
# all of the search prefixes match exactly _node_width. This
1066
# means that everything is an exact match, and we can do a
1067
# lookup into self._items, rather than iterating over the items
1069
search_prefixes = length_filters[self._node_width]
1070
for search_prefix in search_prefixes:
1072
node = self._items[search_prefix]
1074
# We can ignore this one
1076
node_key_filter = prefix_to_keys[search_prefix]
1077
if node.__class__ is tuple:
1078
keys[node] = (search_prefix, node_key_filter)
1080
yield node, node_key_filter
1082
# The slow way. We walk every item in self._items, and check to
1083
# see if there are any matches
1084
length_filters = length_filters.items()
1085
for prefix, node in self._items.iteritems():
1086
node_key_filter = []
1087
for length, length_filter in length_filters:
1088
sub_prefix = prefix[:length]
1089
if sub_prefix in length_filter:
1090
node_key_filter.extend(prefix_to_keys[sub_prefix])
1091
if node_key_filter: # this key matched something, yield it
1092
if node.__class__ is tuple:
1093
keys[node] = (prefix, node_key_filter)
1095
yield node, node_key_filter
1097
# Look in the page cache for some more bytes
1101
bytes = _page_cache[key]
1105
node = _deserialise(bytes, key,
1106
search_key_func=self._search_key_func)
1107
prefix, node_key_filter = keys[key]
1108
self._items[prefix] = node
1110
yield node, node_key_filter
1111
for key in found_keys:
1114
# demand load some pages.
1115
if batch_size is None:
1116
# Read all the keys in
1117
batch_size = len(keys)
1118
key_order = list(keys)
1119
for batch_start in range(0, len(key_order), batch_size):
1120
batch = key_order[batch_start:batch_start + batch_size]
1121
# We have to fully consume the stream so there is no pending
1122
# I/O, so we buffer the nodes for now.
1123
stream = store.get_record_stream(batch, 'unordered', True)
1124
node_and_filters = []
1125
for record in stream:
1126
bytes = record.get_bytes_as('fulltext')
1127
node = _deserialise(bytes, record.key,
1128
search_key_func=self._search_key_func)
1129
prefix, node_key_filter = keys[record.key]
1130
node_and_filters.append((node, node_key_filter))
1131
self._items[prefix] = node
1132
_page_cache.add(record.key, bytes)
1133
for info in node_and_filters:
1136
def map(self, store, key, value):
1137
"""Map key to value."""
1138
if not len(self._items):
1139
raise AssertionError("can't map in an empty InternalNode.")
1140
search_key = self._search_key(key)
1141
if self._node_width != len(self._search_prefix) + 1:
1142
raise AssertionError("node width mismatch: %d is not %d" %
1143
(self._node_width, len(self._search_prefix) + 1))
1144
if not search_key.startswith(self._search_prefix):
1145
# This key doesn't fit in this index, so we need to split at the
1146
# point where it would fit, insert self into that internal node,
1147
# and then map this key into that node.
1148
new_prefix = self.common_prefix(self._search_prefix,
1150
new_parent = InternalNode(new_prefix,
1151
search_key_func=self._search_key_func)
1152
new_parent.set_maximum_size(self._maximum_size)
1153
new_parent._key_width = self._key_width
1154
new_parent.add_node(self._search_prefix[:len(new_prefix)+1],
1156
return new_parent.map(store, key, value)
1157
children = [node for node, _
1158
in self._iter_nodes(store, key_filter=[key])]
1163
child = self._new_child(search_key, LeafNode)
1164
old_len = len(child)
1165
if type(child) is LeafNode:
1166
old_size = child._current_size()
1169
prefix, node_details = child.map(store, key, value)
1170
if len(node_details) == 1:
1171
# child may have shrunk, or might be a new node
1172
child = node_details[0][1]
1173
self._len = self._len - old_len + len(child)
1174
self._items[search_key] = child
1177
if type(child) is LeafNode:
1178
if old_size is None:
1179
# The old node was an InternalNode which means it has now
1180
# collapsed, so we need to check if it will chain to a
1181
# collapse at this level.
1182
trace.mutter("checking remap as InternalNode -> LeafNode")
1183
new_node = self._check_remap(store)
1185
# If the LeafNode has shrunk in size, we may want to run
1186
# a remap check. Checking for a remap is expensive though
1187
# and the frequency of a successful remap is very low.
1188
# Shrinkage by small amounts is common, so we only do the
1189
# remap check if the new_size is low or the shrinkage
1190
# amount is over a configurable limit.
1191
new_size = child._current_size()
1192
shrinkage = old_size - new_size
1193
if (shrinkage > 0 and new_size < _INTERESTING_NEW_SIZE
1194
or shrinkage > _INTERESTING_SHRINKAGE_LIMIT):
1196
"checking remap as size shrunk by %d to be %d",
1197
shrinkage, new_size)
1198
new_node = self._check_remap(store)
1199
if new_node._search_prefix is None:
1200
raise AssertionError("_search_prefix should not be None")
1201
return new_node._search_prefix, [('', new_node)]
1202
# child has overflown - create a new intermediate node.
1203
# XXX: This is where we might want to try and expand our depth
1204
# to refer to more bytes of every child (which would give us
1205
# multiple pointers to child nodes, but less intermediate nodes)
1206
child = self._new_child(search_key, InternalNode)
1207
child._search_prefix = prefix
1208
for split, node in node_details:
1209
child.add_node(split, node)
1210
self._len = self._len - old_len + len(child)
1212
return self._search_prefix, [("", self)]
1214
def _new_child(self, search_key, klass):
1215
"""Create a new child node of type klass."""
1217
child.set_maximum_size(self._maximum_size)
1218
child._key_width = self._key_width
1219
child._search_key_func = self._search_key_func
1220
self._items[search_key] = child
1223
def serialise(self, store):
1224
"""Serialise the node to store.
1226
:param store: A VersionedFiles honouring the CHK extensions.
1227
:return: An iterable of the keys inserted by this operation.
1229
for node in self._items.itervalues():
1230
if type(node) is tuple:
1231
# Never deserialised.
1233
if node._key is not None:
1236
for key in node.serialise(store):
1238
lines = ["chknode:\n"]
1239
lines.append("%d\n" % self._maximum_size)
1240
lines.append("%d\n" % self._key_width)
1241
lines.append("%d\n" % self._len)
1242
if self._search_prefix is None:
1243
raise AssertionError("_search_prefix should not be None")
1244
lines.append('%s\n' % (self._search_prefix,))
1245
prefix_len = len(self._search_prefix)
1246
for prefix, node in sorted(self._items.items()):
1247
if type(node) is tuple:
1251
serialised = "%s\x00%s\n" % (prefix, key)
1252
if not serialised.startswith(self._search_prefix):
1253
raise AssertionError("prefixes mismatch: %s must start with %s"
1254
% (serialised, self._search_prefix))
1255
lines.append(serialised[prefix_len:])
1256
sha1, _, _ = store.add_lines((None,), (), lines)
1257
self._key = ("sha1:" + sha1,)
1258
_page_cache.add(self._key, ''.join(lines))
1261
def _search_key(self, key):
1262
"""Return the serialised key for key in this node."""
1263
# search keys are fixed width. All will be self._node_width wide, so we
1265
return (self._search_key_func(key) + '\x00'*self._node_width)[:self._node_width]
1267
def _search_prefix_filter(self, key):
1268
"""Serialise key for use as a prefix filter in iteritems."""
1269
return self._search_key_func(key)[:self._node_width]
1271
def _split(self, offset):
1272
"""Split this node into smaller nodes starting at offset.
1274
:param offset: The offset to start the new child nodes at.
1275
:return: An iterable of (prefix, node) tuples. prefix is a byte
1276
prefix for reaching node.
1278
if offset >= self._node_width:
1279
for node in self._items.values():
1280
for result in node._split(offset):
1283
for key, node in self._items.items():
1287
"""Return the references to other CHK's held by this node."""
1288
if self._key is None:
1289
raise AssertionError("unserialised nodes have no refs.")
1291
for value in self._items.itervalues():
1292
if type(value) is tuple:
1295
refs.append(value.key())
1298
def _compute_search_prefix(self, extra_key=None):
1299
"""Return the unique key prefix for this node.
1301
:return: A bytestring of the longest search key prefix that is
1302
unique within this node.
1304
self._search_prefix = self.common_prefix_for_keys(self._items)
1305
return self._search_prefix
1307
def unmap(self, store, key, check_remap=True):
1308
"""Remove key from this node and it's children."""
1309
if not len(self._items):
1310
raise AssertionError("can't unmap in an empty InternalNode.")
1311
children = [node for node, _
1312
in self._iter_nodes(store, key_filter=[key])]
1318
unmapped = child.unmap(store, key)
1320
search_key = self._search_key(key)
1321
if len(unmapped) == 0:
1322
# All child nodes are gone, remove the child:
1323
del self._items[search_key]
1326
# Stash the returned node
1327
self._items[search_key] = unmapped
1328
if len(self._items) == 1:
1329
# this node is no longer needed:
1330
return self._items.values()[0]
1331
if type(unmapped) is InternalNode:
1334
return self._check_remap(store)
1338
def _check_remap(self, store):
1339
"""Check if all keys contained by children fit in a single LeafNode.
1341
:param store: A store to use for reading more nodes
1342
:return: Either self, or a new LeafNode which should replace self.
1344
# Logic for how we determine when we need to rebuild
1345
# 1) Implicitly unmap() is removing a key which means that the child
1346
# nodes are going to be shrinking by some extent.
1347
# 2) If all children are LeafNodes, it is possible that they could be
1348
# combined into a single LeafNode, which can then completely replace
1349
# this internal node with a single LeafNode
1350
# 3) If *one* child is an InternalNode, we assume it has already done
1351
# all the work to determine that its children cannot collapse, and
1352
# we can then assume that those nodes *plus* the current nodes don't
1353
# have a chance of collapsing either.
1354
# So a very cheap check is to just say if 'unmapped' is an
1355
# InternalNode, we don't have to check further.
1357
# TODO: Another alternative is to check the total size of all known
1358
# LeafNodes. If there is some formula we can use to determine the
1359
# final size without actually having to read in any more
1360
# children, it would be nice to have. However, we have to be
1361
# careful with stuff like nodes that pull out the common prefix
1362
# of each key, as adding a new key can change the common prefix
1363
# and cause size changes greater than the length of one key.
1364
# So for now, we just add everything to a new Leaf until it
1365
# splits, as we know that will give the right answer
1366
new_leaf = LeafNode(search_key_func=self._search_key_func)
1367
new_leaf.set_maximum_size(self._maximum_size)
1368
new_leaf._key_width = self._key_width
1369
# A batch_size of 16 was chosen because:
1370
# a) In testing, a 4k page held 14 times. So if we have more than 16
1371
# leaf nodes we are unlikely to hold them in a single new leaf
1372
# node. This still allows for 1 round trip
1373
# b) With 16-way fan out, we can still do a single round trip
1374
# c) With 255-way fan out, we don't want to read all 255 and destroy
1375
# the page cache, just to determine that we really don't need it.
1376
for node, _ in self._iter_nodes(store, batch_size=16):
1377
if type(node) is InternalNode:
1378
# Without looking at any leaf nodes, we are sure
1380
for key, value in node._items.iteritems():
1381
if new_leaf._map_no_split(key, value):
1383
trace.mutter("remap generated a new LeafNode")
1387
def _deserialise(bytes, key, search_key_func):
1388
"""Helper for repositorydetails - convert bytes to a node."""
1389
if bytes.startswith("chkleaf:\n"):
1390
node = LeafNode.deserialise(bytes, key, search_key_func=search_key_func)
1391
elif bytes.startswith("chknode:\n"):
1392
node = InternalNode.deserialise(bytes, key,
1393
search_key_func=search_key_func)
1395
raise AssertionError("Unknown node type.")
1399
def _find_children_info(store, interesting_keys, uninteresting_keys, pb):
1400
"""Read the associated records, and determine what is interesting."""
1401
uninteresting_keys = set(uninteresting_keys)
1402
chks_to_read = uninteresting_keys.union(interesting_keys)
1403
next_uninteresting = set()
1404
next_interesting = set()
1405
next_interesting_intersection = None
1406
uninteresting_items = set()
1407
interesting_items = set()
1408
interesting_to_yield = []
1409
for record in store.get_record_stream(chks_to_read, 'unordered', True):
1410
# records_read.add(record.key())
1413
bytes = record.get_bytes_as('fulltext')
1414
# We don't care about search_key_func for this code, because we only
1415
# care about external references.
1416
node = _deserialise(bytes, record.key, search_key_func=None)
1417
if record.key in uninteresting_keys:
1418
if type(node) is InternalNode:
1419
next_uninteresting.update(node.refs())
1421
# We know we are at a LeafNode, so we can pass None for the
1423
uninteresting_items.update(node.iteritems(None))
1425
interesting_to_yield.append(record.key)
1426
if type(node) is InternalNode:
1427
if next_interesting_intersection is None:
1428
next_interesting_intersection = set(node.refs())
1430
next_interesting_intersection = \
1431
next_interesting_intersection.intersection(node.refs())
1432
next_interesting.update(node.refs())
1434
interesting_items.update(node.iteritems(None))
1435
return (next_uninteresting, uninteresting_items,
1436
next_interesting, interesting_to_yield, interesting_items,
1437
next_interesting_intersection)
1440
def _find_all_uninteresting(store, interesting_root_keys,
1441
uninteresting_root_keys, pb):
1442
"""Determine the full set of uninteresting keys."""
1443
# What about duplicates between interesting_root_keys and
1444
# uninteresting_root_keys?
1445
if not uninteresting_root_keys:
1446
# Shortcut case. We know there is nothing uninteresting to filter out
1447
# So we just let the rest of the algorithm do the work
1448
# We know there is nothing uninteresting, and we didn't have to read
1449
# any interesting records yet.
1450
return (set(), set(), set(interesting_root_keys), [], set())
1451
all_uninteresting_chks = set(uninteresting_root_keys)
1452
all_uninteresting_items = set()
1454
# First step, find the direct children of both the interesting and
1456
(uninteresting_keys, uninteresting_items,
1457
interesting_keys, interesting_to_yield,
1458
interesting_items, interesting_intersection,
1459
) = _find_children_info(store, interesting_root_keys,
1460
uninteresting_root_keys,
1462
all_uninteresting_chks.update(uninteresting_keys)
1463
all_uninteresting_items.update(uninteresting_items)
1464
del uninteresting_items
1465
# Do not examine in detail pages common to all interesting trees.
1466
# Pages that are common to all interesting trees will have their
1467
# older versions found via the uninteresting tree traversal. Some pages
1468
# found via the interesting trees traversal will be uninteresting for
1469
# other of the interesting trees, which is why we require the pages to be
1470
# common for us to trim them.
1471
if interesting_intersection is not None:
1472
uninteresting_keys.difference_update(interesting_intersection)
1474
# Second, find the full set of uninteresting bits reachable by the
1475
# uninteresting roots
1476
chks_to_read = uninteresting_keys
1479
for record in store.get_record_stream(chks_to_read, 'unordered', False):
1480
# TODO: Handle 'absent'
1483
bytes = record.get_bytes_as('fulltext')
1484
# We don't care about search_key_func for this code, because we
1485
# only care about external references.
1486
node = _deserialise(bytes, record.key, search_key_func=None)
1487
if type(node) is InternalNode:
1488
# uninteresting_prefix_chks.update(node._items.iteritems())
1489
chks = node._items.values()
1490
# TODO: We remove the entries that are already in
1491
# uninteresting_chks ?
1492
next_chks.update(chks)
1493
all_uninteresting_chks.update(chks)
1495
all_uninteresting_items.update(node._items.iteritems())
1496
chks_to_read = next_chks
1497
return (all_uninteresting_chks, all_uninteresting_items,
1498
interesting_keys, interesting_to_yield, interesting_items)
1501
def iter_interesting_nodes(store, interesting_root_keys,
1502
uninteresting_root_keys, pb=None):
1503
"""Given root keys, find interesting nodes.
1505
Evaluate nodes referenced by interesting_root_keys. Ones that are also
1506
referenced from uninteresting_root_keys are not considered interesting.
1508
:param interesting_root_keys: keys which should be part of the
1509
"interesting" nodes (which will be yielded)
1510
:param uninteresting_root_keys: keys which should be filtered out of the
1513
(interesting record, {interesting key:values})
1515
# TODO: consider that it may be more memory efficient to use the 20-byte
1516
# sha1 string, rather than tuples of hexidecimal sha1 strings.
1517
# TODO: Try to factor out a lot of the get_record_stream() calls into a
1518
# helper function similar to _read_bytes. This function should be
1519
# able to use nodes from the _page_cache as well as actually
1520
# requesting bytes from the store.
1522
(all_uninteresting_chks, all_uninteresting_items, interesting_keys,
1523
interesting_to_yield, interesting_items) = _find_all_uninteresting(store,
1524
interesting_root_keys, uninteresting_root_keys, pb)
1526
# Now that we know everything uninteresting, we can yield information from
1528
interesting_items.difference_update(all_uninteresting_items)
1529
interesting_to_yield = set(interesting_to_yield) - all_uninteresting_chks
1530
if interesting_items:
1531
yield None, interesting_items
1532
if interesting_to_yield:
1533
# We request these records again, rather than buffering the root
1534
# records, most likely they are still in the _group_cache anyway.
1535
for record in store.get_record_stream(interesting_to_yield,
1536
'unordered', False):
1538
all_uninteresting_chks.update(interesting_to_yield)
1539
interesting_keys.difference_update(all_uninteresting_chks)
1541
chks_to_read = interesting_keys
1545
for record in store.get_record_stream(chks_to_read, 'unordered', False):
1548
pb.update('find chk pages', counter)
1549
# TODO: Handle 'absent'?
1550
bytes = record.get_bytes_as('fulltext')
1551
# We don't care about search_key_func for this code, because we
1552
# only care about external references.
1553
node = _deserialise(bytes, record.key, search_key_func=None)
1554
if type(node) is InternalNode:
1555
# all_uninteresting_chks grows large, as it lists all nodes we
1556
# don't want to process (including already seen interesting
1558
# small.difference_update(large) scales O(large), but
1559
# small.difference(large) scales O(small).
1560
# Also, we know we just _deserialised this node, so we can
1561
# access the dict directly.
1562
chks = set(node._items.itervalues()).difference(
1563
all_uninteresting_chks)
1564
# Is set() and .difference_update better than:
1565
# chks = [chk for chk in node.refs()
1566
# if chk not in all_uninteresting_chks]
1567
next_chks.update(chks)
1568
# These are now uninteresting everywhere else
1569
all_uninteresting_chks.update(chks)
1570
interesting_items = []
1572
interesting_items = [item for item in node._items.iteritems()
1573
if item not in all_uninteresting_items]
1574
# TODO: Do we need to filter out items that we have already
1575
# seen on other pages? We don't really want to buffer the
1576
# whole thing, but it does mean that callers need to
1577
# understand they may get duplicate values.
1578
# all_uninteresting_items.update(interesting_items)
1579
yield record, interesting_items
1580
chks_to_read = next_chks
1584
from bzrlib._chk_map_pyx import (
1587
_deserialise_leaf_node,
1588
_deserialise_internal_node,
1591
from bzrlib._chk_map_py import (
1594
_deserialise_leaf_node,
1595
_deserialise_internal_node,
1597
search_key_registry.register('hash-16-way', _search_key_16)
1598
search_key_registry.register('hash-255-way', _search_key_255)